题目链接: https://www.nowcoder.com/acm/contest/181#question

A.斐波拉契

求$f[n-1]*f[n+1]-f[n]^2$,$f[n]$为斐波拉契数列第$n$项

算一下前几项不难发现答案为$(-1)^n$,下面用数学归纳法证明一下:

$n=2$时,猜想成立

假设$n=k$时猜想成立,即$f[k-1]*f[k+1]-f[k]^2=(-1)^k$

当$n=k$时,$f[k]f[k+2]-f[k+1]^2=f[k](f[k+1]+f[k])-f[k+1]*(f[k]+f[k-1])=f[k]^2-f[k-1]f[k+1]=(-1)^{k+1}$

得证

#include <cstdio>
#include <algorithm>
#include<vector>
#include<iostream>
#include<cstring>
char s[1000005];
using namespace std;
int main(){
scanf("%s",s);
int l=strlen(s);
int z=s[l-1]-'0';
if(z%2==0)
cout<<1<<endl;
else cout<<-1<<endl;
}

B.送分题

#include <cstdio>
#include <algorithm>
#include<vector>
#include<iostream>
using namespace std;
bool vis[10005];
int a[10005];
vector<int> ans;
int main(){
long long a,b;
cin>>a>>b;
cout<<a+b<<endl;
}

C.序列

暴力就好,先求出该序列每处的前缀和,用map表示该前缀和存在,对于每次查询,先判断k之前是否查询过,查询过则不用判断,再判断序列和是否是k的倍数,否则,对于$1(sum/z)~k(sum/z)$的前缀和是否都存在

#include <cstdio>
#include <algorithm>
#include<vector>
#include<iostream>
#include<cstring>
#include<map>
using namespace std;
typedef long long ll;
const int maxn=100005;
int ans[maxn]; ll a[maxn];
map<ll,int> mp; int main(){
int n,q;
scanf("%d%d",&n,&q);
ll sum=0;
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
sum+=a[i];
mp[sum]=1;
}
for(int i=1;i<=q;i++){
int z;
scanf("%d",&z);
if(z>n||sum%z!=0||ans[z]==2){
printf("No\n");
continue;
} if(ans[z]==1){
printf("Yes\n");
continue;
}
for(int i=1;i*(sum/z)<sum;i++){
if(mp[i*(sum/z)]!=1){
printf("No\n");
ans[z]=2;
break;
}
}
if(ans[z]!=2){
printf("Yes\n");
ans[z]=1;
}
}
}

D.小叶的巡查

求下直径就好了

#include <cstdio>
#include <algorithm>
#include<vector>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=100005;
vector< pair<int,int> > g[maxn];
int d[maxn];
bool vis[maxn];
void dfs(int u){
vis[u]=1;
for(int i=0;i<g[u].size();i++){
int v=g[u][i].first;
if(!vis[v]){
d[v]=d[u]+g[u][i].second;
dfs(v);
}
}
}
int main(){
int n;
scanf("%d",&n);
for(int i=1;i<n;i++){
int x,y,z;
scanf("%d%d%d",&x,&y,&z);
g[x].push_back(make_pair(y,z));
g[y].push_back(make_pair(x,z));
}
// cout<<-1<<endl;
dfs(1);
int cnt;
long long dmax=0;
for(int i=1;i<=n;i++){
if(d[i]>dmax){
dmax=d[i];
cnt=i;
}
vis[i]=0;
d[i]=0;
}
dmax=0;
dfs(cnt);
for(int i=1;i<=n;i++){
if(d[i]>dmax){
dmax=d[i];
}
}
cout<<dmax*10+(1+dmax)*dmax/2<<endl;
}

E.旅行青蛙

最长上升子序列,但是感觉题意有问题,题目的描述应该是最长不上升子序列233,n比较大,用$O(n*log n)$的写法

#include <cstdio>
#include <algorithm>
#include<vector>
#include<iostream>
#include<cstring>
using namespace std;
const int maxn=100005;
int dp[maxn];
int a[maxn];
int n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",&a[i]);
int cnt=0;
dp[0]=-1e9;
for(int i=1;i<=n;i++){
if(a[i]>=dp[cnt]){
dp[++cnt]=a[i];
}
else {
int z=upper_bound(dp+1,dp+1+cnt,a[i])-dp;
dp[z]=a[i];
}
}
cout<<cnt<<endl;
}

F.子序列

由题意知,答案与序列的顺序无关,故先将序列排个序,对于序列中的第i个数,需要相乘的次数为$C{n-1}^{k-1}-C{i-1}^{k-1}-C_{n-i}^{k-1}$。又1e9+7为素数,根据欧拉公式$a^{p-1}\equiv1mod p$

即可得出答案

#include <cstdio>
#include <algorithm>
#include<vector>
#include<iostream>
#include<cstring>
#include<map>
using namespace std;
typedef long long ll;
const ll mod=1e9+7;
const int maxn=1005; ll pmod(ll a,ll b){
if(a==0) return 0;
if(b==0) return 1;
if(b==1) return a%mod;
ll ans=pmod(a,b/2);
ans=ans*ans%mod;
if(b&1)
return ans*a%mod;
return ans;
}
ll a[maxn];
ll c[maxn][maxn];
int main(){
for(int i=0;i<=1000;i++)
c[i][0]=1;
c[1][1]=1;
for(int i=1;i<=1000;i++)
c[i][i]=1;
for(int i=1;i<=1000;i++)
for(int j=1;j<i;j++)
c[i][j]=(c[i-1][j]+c[i-1][j-1])%(mod-1);
int t;
scanf("%d",&t);
while(t--){
int n,k;
scanf("%d%d",&n,&k);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]);
sort(a+1,a+1+n);
ll ans=1;
for(int i=2;i<n;i++){
ll z=c[n-1][k-1];
if(n-i>=k-1)
z-=c[n-i][k-1];
if(i-1>=k-1)
z-=c[i-1][k-1];
z=((z)%(mod-1)+mod-1)%(mod-1);
z=pmod(a[i],z);
ans=ans*z%mod;
}
printf("%lld\n",ans);
}
return 0;
}

  

牛客OI测试赛1的更多相关文章

  1. 关于斐波那契数列的一些恒等式 模板 牛客OI测试赛 A 斐波拉契

    牛客A 斐波拉契 链接:https://www.nowcoder.com/acm/contest/181/A来源:牛客网 设f[i]表示斐波那契数论的第i项 f[1]=1,f[2] =1,f[i] = ...

  2. 牛客OI测试赛 C 序列 思维

    链接:https://www.nowcoder.com/acm/contest/181/C来源:牛客网 题目描述 小a有n个数,他想把他们划分为连续的权值相等的k段,但他不知道这是否可行. 每个数都必 ...

  3. 牛客OI测试赛 F 子序列 组合数学 欧拉降幂公式模板

    链接:https://www.nowcoder.com/acm/contest/181/F来源:牛客网 题目描述 给出一个长度为n的序列,你需要计算出所有长度为k的子序列中,除最大最小数之外所有数的乘 ...

  4. 牛客oi测试赛 二 B 路径数量

    题目描述 给出一个 n * n 的邻接矩阵A. A是一个01矩阵 . A[i][j]=1表示i号点和j号点之间有长度为1的边直接相连. 求出从 1 号点 到 n 号点长度为k的路径的数目. 输入描述: ...

  5. [牛客OI测试赛2]F假的数学游戏(斯特灵公式)

    题意 输入一个整数X,求一个整数N,使得N!恰好大于$X^X$. Sol 考试的时候只会$O(n)$求$N!$的前缀和啊. 不过最后的结论挺好玩的 $n! \approx \sqrt{2 \pi n} ...

  6. 牛客OI测试赛2

    题目链接:https://www.nowcoder.com/acm/contest/185#question A.无序组数 暴力求出A和B的因子,注意二元组是无序的,因此还要考虑有些因子在A和B中都存 ...

  7. 【牛客OI赛制测试赛3】 毒瘤xor

    牛客OI赛制测试赛3 毒瘤xor 传送门 题面,水表者自重 Solution 前缀和简单题(挖坑待补) 代码实现 #include<stdio.h> #define int long lo ...

  8. 牛客OI赛制测试赛2(0906)

    牛客OI赛制测试赛2(0906) A :无序组数 题目描述 给出一个二元组(A,B) 求出无序二元组(a,b) 使得(a|A,b|B)的组数 无序意思就是(a,b)和(b,a) 算一组. 输入描述: ...

  9. 牛客OI月赛12-提高组题解

    牛客OI月赛12-提高组 当天晚上被\(loli\)要求去打了某高端oj部分原创的模拟赛,第二天看了牛客的题觉得非常清真,于是就去写了 不难发现现场写出\(260\text{pts}\)并不需要动脑子 ...

随机推荐

  1. Paddle Lite端侧部署

    Paddle Lite端侧部署 端侧推理引擎的由来 随着深度学习的快速发展.特别是小型网络模型的不断成熟,原本应用到云端的深度学习推理,就可以放到终端上来做,比如手机.手表.摄像头.传感器.音响,也就 ...

  2. SQL Parameter参数的用法

    SqlParameter 类 表示 SqlCommand 的参数,也可以是它到 DataSet 列的映射. 无法继承此类. 命名空间:  System.Data.SqlClient 程序集:  Sys ...

  3. Django框架之路由层汇总

    一 Django中路由的作用 URL配置(URLconf)就像Django 所支撑网站的目录.它的本质是URL与要为该URL调用的视图函数之间的映射表:你就是以这种方式告诉Django,对于客户端发来 ...

  4. python_selenium 之yaml文件读取(以读取元素信息为例)

    一.yaml源文件编写 二.对yaml文件内容的读取 #coding=gbkimport osimport yamlcurrent_path=os.path.dirname(__file__)yaml ...

  5. 使用regulator_get时的一个小注意事项

    Linux kernel 使用 regulator 框架来管理电源,比如 PMIC 芯片上常见的LDO.使用 regulator 的常规流程如以下代码所示: void set_vbus_voltage ...

  6. windows10环境下gcc环境变量的配置

    1.首先打开控制面板-系统和安全-系统-高级系统设置,打开环境变量 2.在用户变量里找到Path,点击编辑,点击新建,找到Qt的tools安装目录并将目录复制进去保存,我的目录是C:\Qt\Qt5.9 ...

  7. npm install 动不动卡住咋办?

    Hello 我是大粽子 孩子静消消,必定在作妖.我这三天静消消,也是在憋大招. 提前预告下,最近和视频号的文档正在较劲,剩下的功能大家猜猜.暂时没有留言功能,可以私信回复,猜对的下次购买时提我大名10 ...

  8. MySQL分页查询limit踩坑记

    1 问题背景 线上有一个批处理任务,会批量读取昨日的数据,经过一系列加工后,插入到今日的表中.表结构如下: 1 CREATE TABLE `detail_yyyyMMdd` ( 2 `id` bigi ...

  9. 「题解」黑暗塔 wizard

    本文将同步发布于: 洛谷博客: csdn: 博客园: 简书. 题目 题意简述 给定 \(y\),求 \(\varphi(x)=y\) 中 \(x\) 的个数和最大值. \(1\leq y\leq 10 ...

  10. 【模拟7.27】题(liu_runda的神题)(卡特兰数,组合数)

    考场的SB经验不再分享 case 0: 一道组合计数的水题,具体不再讲可以看以前的相似题 case 1: 很明显的卡特兰计数,我们把长度为n的序列看成01串 关于卡特兰计数的详细的讲解 由此可知我们需 ...