Content

给定一个 \(n\times m\) 的矩阵 \(A\) 和一个 \(m\times k\) 的矩阵 \(B\),求两个矩阵相乘得到的矩阵。

\(n\times m\) 的矩阵 \(A\) 和一个 \(m\times k\) 的矩阵 \(B\) 相乘会得到一个 \(n\times k\) 的矩阵 \(C\),并且有以下关系:

\[C_{i,j}=\sum\limits_{p=1}^mA_{i,p}+B_{p,j}
\]

数据范围:\(1\leqslant n,m\leqslant 100\)。

Solution

根据题意,我们先循环 \(i\),再循环 \(j\),最后在循环 \(p\),按照公式直接求 \(A_{i,p}\) 和 \(B_{p,j}\) 的和,加入 \(C_{i,j}\) 中即可得到 \(C\) 矩阵。

多提一嘴:当且仅当 \(A\) 矩阵的列数等于 \(B\) 矩阵的行数时,\(A\times B\) 才有意义

Code

#include <cstdio>
using namespace std;
int n, m, k, a[107][107], b[107][107], c[107][107]; int main() {
scanf("%d%d%d", &n, &m, &k)
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%d", &a[i][j]);
for(int i = 1; i <= m; ++i) for(int j = 1; j <= k; ++j) scanf("%d", &b[i][j]);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) for(int l = 1; l <= k; ++l) c[i][j] += a[i][l] * b[l][j];
for(int i = 1; i <= n; ++i) {for(int j = 1; j <= k; ++j) printf("%d", c[i][j]); puts("");}
return 0;
}

LuoguB2105 矩阵乘法 题解的更多相关文章

  1. BZOJ2738:矩阵乘法——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2738 Description 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数 ...

  2. 【日常学习】codevs1287 矩阵乘法题解

    转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看. 先上题目 题目描写叙述 Description 小明近期在为线性代数而头疼,线性代数确实非 ...

  3. P1962 斐波那契数列-题解(矩阵乘法扩展)

    https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首 ...

  4. [模板][题解][Luogu1939]矩阵乘法加速递推(详解)

    题目传送门 题目大意:计算数列a的第n项,其中: \[a[1] = a[2] = a[3] = 1\] \[a[i] = a[i-3] + a[i - 1]\] \[(n ≤ 2 \times 10^ ...

  5. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  6. poj3233 题解 矩阵乘法 矩阵快速幂

    题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个 ...

  7. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  8. hdu4920 Matrix multiplication 模3矩阵乘法

    hdu4920 Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  9. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

随机推荐

  1. docker详细

    镜像(image) 容器(container) 启动,删除,停止 仓库(repository)   docker images  

  2. html+css第九篇

    热区: <img src="img/login.gif" alt="" border="0" usemap="#Map&qu ...

  3. 网络协议之:一定要大写的SOCKS

    目录 简介 SOCKS的故事 SOCKS的历史 SOCKS协议的具体内容 SOCKS4 SOCKS4a SOCKS5 总结 简介 很久很久以前,人们还穿的是草鞋,草鞋虽然穿着舒服,但是不够美观.然后人 ...

  4. CF1368F Lamps on a Circle

    思考我们一定有最后一个状态是空着的灯是按照一个间隔\(k\) 只要将原来\(n\)个灯,每\(k\)个分一组,强制将最后一盏灯不选,并且第n盏灯不选,需要注意的是某一组一定会被第二个人全部关掉,那么可 ...

  5. Codeforces 288E - Polo the Penguin and Lucky Numbers(数位 dp+推式子)

    题目传送门 似乎我的解法和官方题解不太一样 纪念自己独立做出来的一道难度 2800 的题. 我们记 \(ans(x)\) 为 \([444...44,x]\) 的答案,显然答案为 \(ans(r)-a ...

  6. 搭建zabbix服务器常见问题解析处理

    1. 找不到url 2. 服务器无法处理当前请求,PHP解析出错 3. 服务器无法处理当前请求,权限不足 1. 找不到url 浏览器报错:The requested URL /zabbix/ was ...

  7. accessory, accident

    accessory 1. belt, scarf, handbag, Penny用rhinestone做的小首饰(Penny Blossom)都是accessory2. With default se ...

  8. accomplish, accord

    accomplish =achieve; accomplishment=achievement. accomplished: well educated/trained, skilled. skill ...

  9. Hive(七)【内置函数】

    目录 一.系统内置函数 1.查看系统自带内置函数 2.查看函数的具体用法 二.常用内置函数 1.数学函数 round 2.字符函数 split concat concat_ws lower,upper ...

  10. 容器之分类与各种测试(三)——list部分用法

    list是一个双向链表 例程 #include<stdexcept> #include<memory.h> #include<string> #include< ...