Content

给定一个 \(n\times m\) 的矩阵 \(A\) 和一个 \(m\times k\) 的矩阵 \(B\),求两个矩阵相乘得到的矩阵。

\(n\times m\) 的矩阵 \(A\) 和一个 \(m\times k\) 的矩阵 \(B\) 相乘会得到一个 \(n\times k\) 的矩阵 \(C\),并且有以下关系:

\[C_{i,j}=\sum\limits_{p=1}^mA_{i,p}+B_{p,j}
\]

数据范围:\(1\leqslant n,m\leqslant 100\)。

Solution

根据题意,我们先循环 \(i\),再循环 \(j\),最后在循环 \(p\),按照公式直接求 \(A_{i,p}\) 和 \(B_{p,j}\) 的和,加入 \(C_{i,j}\) 中即可得到 \(C\) 矩阵。

多提一嘴:当且仅当 \(A\) 矩阵的列数等于 \(B\) 矩阵的行数时,\(A\times B\) 才有意义

Code

#include <cstdio>
using namespace std;
int n, m, k, a[107][107], b[107][107], c[107][107]; int main() {
scanf("%d%d%d", &n, &m, &k)
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) scanf("%d", &a[i][j]);
for(int i = 1; i <= m; ++i) for(int j = 1; j <= k; ++j) scanf("%d", &b[i][j]);
for(int i = 1; i <= n; ++i) for(int j = 1; j <= m; ++j) for(int l = 1; l <= k; ++l) c[i][j] += a[i][l] * b[l][j];
for(int i = 1; i <= n; ++i) {for(int j = 1; j <= k; ++j) printf("%d", c[i][j]); puts("");}
return 0;
}

LuoguB2105 矩阵乘法 题解的更多相关文章

  1. BZOJ2738:矩阵乘法——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2738 Description 给你一个N*N的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第K小数 ...

  2. 【日常学习】codevs1287 矩阵乘法题解

    转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看. 先上题目 题目描写叙述 Description 小明近期在为线性代数而头疼,线性代数确实非 ...

  3. P1962 斐波那契数列-题解(矩阵乘法扩展)

    https://www.luogu.org/problemnew/show/P1962(题目传送) n的范围很大,显然用普通O(N)的递推求F(n)铁定超时了.这里介绍一种用矩阵快速幂实现的解法: 首 ...

  4. [模板][题解][Luogu1939]矩阵乘法加速递推(详解)

    题目传送门 题目大意:计算数列a的第n项,其中: \[a[1] = a[2] = a[3] = 1\] \[a[i] = a[i-3] + a[i - 1]\] \[(n ≤ 2 \times 10^ ...

  5. 题解——洛谷P1962 斐波那契数列(矩阵乘法)

    矩阵乘法加速线性递推的典型 大概套路就是先构造一个矩阵\( F \)使得另一初始矩阵\( A \)乘以\( F^{x} \)能够得出第n项 跑的飞快 虽然我也不知道那个矩阵要怎么构造 或许就像我使用了 ...

  6. poj3233 题解 矩阵乘法 矩阵快速幂

    题意:求S = A + A2 + A3 + … + Ak.(mod m) 这道题很明显可以用矩阵乘法,但是这道题的矩阵是分块矩阵, 分块矩阵概念如下:当一个矩阵A中的单位元素aij不是一个数值而是一个 ...

  7. HDU 5895 Mathematician QSC(矩阵乘法+循环节降幂+除法取模小技巧+快速幂)

    传送门:HDU 5895 Mathematician QSC 这是一篇很好的题解,我想讲的他基本都讲了http://blog.csdn.net/queuelovestack/article/detai ...

  8. hdu4920 Matrix multiplication 模3矩阵乘法

    hdu4920 Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 ...

  9. Codevs 1287 矩阵乘法&&Noi.cn 09:矩阵乘法(矩阵乘法练手题)

    1287 矩阵乘法  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 黄金 Gold 题解  查看运行结果     题目描述 Description 小明最近在为线性代数而头疼, ...

随机推荐

  1. SpringCloud升级之路2020.0.x版-41. SpringCloudGateway 基本流程讲解(2)

    本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 我们继续分析上一节提到的 WebHandler,经过将请求封装成 ServerWebExc ...

  2. SpringCloud升级之路2020.0.x版-43.为何 SpringCloudGateway 中会有链路信息丢失

    本系列代码地址:https://github.com/JoJoTec/spring-cloud-parent 在开始编写我们自己的日志 Filter 之前,还有一个问题我想在这里和大家分享,即在 Sp ...

  3. .NET E F(Entity Framework)框架 DataBase First 和 Code First 简单用法。

    EF是微软.NET平台官方的ORM(objet-relation mapping),就是一种对象-关系 映射,是将关系数据库种的业务数据用对象的形式表现出来,并通过面向对象的方式讲这些对象组织起来,实 ...

  4. Codeforces 1175F - The Number of Subpermutations(线段树+单调栈+双针/分治+启发式优化)

    Codeforces 题面传送门 & 洛谷题面传送门 由于这场的 G 是道毒瘤题,蒟蒻切不动就只好来把这场的 F 水掉了 看到这样的设问没人想到这道题吗?那我就来发篇线段树+单调栈的做法. 首 ...

  5. UOJ #11 - 【UTR #1】ydc的大树(换根 dp)

    题面传送门 Emmm--这题似乎做法挺多的,那就提供一个想起来写起来都不太困难的做法吧. 首先不难想到一个时间复杂度 \(\mathcal O(n^2)\) 的做法:对于每个黑点我们以它为根求出离它距 ...

  6. 43-Reverse Nodes in k-Group

    Reverse Nodes in k-Group My Submissions QuestionEditorial Solution Total Accepted: 58690 Total Submi ...

  7. java中的Arrays类

    今天刚接触了数组,学到了几个比较常用的方法 Fill方法:给数组赋值 sort方法:给数组升序 equals方法:比较数组中元素 值是否相等 binarySearch方法:对排序好的数组进行二分查找法 ...

  8. 学习java 7.16

    学习内容: 线程安全的类 Lock锁 生产者消费者模式 Object类的等待唤醒方法 明天内容: 网络编程 通信程序 遇到问题: 无

  9. 【Android】No Android SDK found(mac)+ 真机调试

     [1]No Android SDK found 如果没下载SDK,可以去google官方下载 如果因为上网问题,这里提供两个网址,有人整理好了,这里先谢谢他们,下面两个择其一下载 http://to ...

  10. MyBatis常用批量方法

    <!-- 批量添加派车单子表数据 --> <insert id="addBatch" parameterType="java.util.List&quo ...