基本思想V1:

  • 将输入图像分成S*S个格子,每隔格子负责预测中心在此格子中的物体。
  • 每个格子预测B个bounding box及其置信度(confidence score),以及C个类别概率。
  • bbox信息(x,y,w,h)为物体的中心位置相对格子位置的偏移及宽度和高度,均被归一化.
  • 置信度反映是否包含物体,以及包含物体情况下位置的准确性。定义为Pr(Object)×IoU,其中Pr(Object)∈{0,1}

改进的V2:

  YOLO v2主要改进是提高召回率和定位能力。

  • Batch Normalization: v1中也大量用了Batch Normalization,同时在定位层后边用了dropout,v2中取消了dropout,在卷积层全部使用Batch Normalization。
  • 高分辨率分类器:v1中使用224 × 224训练分类器网络,扩大到448用于检测网络。v2将ImageNet以448×448 的分辨率微调最初的分类网络,迭代10 epochs。
  • Anchor Boxes:v1中直接在卷积层之后使用全连接层预测bbox的坐标。v2借鉴Faster R-CNN的思想预测bbox的偏移,移除了全连接层,并且删掉了一个pooling层使特征的分辨率更大。调整了网络的输入(448->416),以使得位置坐标为奇数,这样就只有一个中心点。加上Anchor Boxes能预测超过1000个。检测结果从69.5mAP,81% recall变为69.2 mAP,88% recall.
  • YOLO v2对Faster R-CNN的首选先验框方法做了改进,采样k-means在训练集bbox上进行聚类产生合适的先验框。由于使用欧氏距离会使较大的bbox比小的bbox产生更大的误差,而IoU与bbox尺寸无关,因此使用IOU参与距离计算,使得通过这些anchor boxes获得好的IOU分值。
  • 细粒度特征(fine grain features):借鉴了Faster R-CNN 和 SSD使用的不同尺寸的feature map,以适应不同尺度大小的目标。YOLOv2使用了一种不同的方法,简单添加一个pass through layer,把浅层特征图连接到深层特征图。通过叠加浅层特征图相邻特征到不同通道(而非空间位置),类似于Resnet中的identity mapping。这个方法把26x26x512的特征图叠加成13x13x2048的特征图,与原生的深层特征图相连接,使模型有了细粒度特征。此方法使得模型的性能获得了1%的提升。
  • Multi-Scale Training: 和YOLOv1训练时网络输入的图像尺寸固定不变不同,YOLOv2(在cfg文件中random=1时)每隔几次迭代后就会微调网络的输入尺寸。训练时每迭代10次,就会随机选择新的输入图像尺寸。因为YOLOv2的网络使用的downsamples倍率为32,所以使用32的倍数调整输入图像尺寸{320,352,…,608}。训练使用的最小的图像尺寸为320 x 320,最大的图像尺寸为608 x 608。 这使得网络可以适应多种不同尺度的输入。
  • V2对V1的基础网络也做了修改。

改进的YOLO V3:

  • 多尺度预测 ,类似FPN(feature pyramid networks)
  • 更好的基础分类网络(类ResNet)和分类器

分类器:

  • YOLOv3不使用Softmax对每个框进行分类,而使用多个logistic分类器,因为Softmax不适用于多标签分类,用独立的多个logistic分类器准确率也不会下降。
  • 分类损失采用binary cross-entropy loss.

多尺度预测

  • 每种尺度预测3个box, anchor的设计方式仍然使用聚类,得到9个聚类中心,将其按照大小均分给3中尺度。

    • 尺度1: 在基础网络之后添加一些卷积层再输出box信息。
    • 尺度2: 从尺度1中的倒数第二层的卷积层上采样(x2)再与最后一个16x16大小的特征图相加,再次通过多个卷积后输出box信息.相比尺度1变大两倍。
    • 尺度3: 与尺度2类似,使用了32x32大小的特征图.

基础网络 Darknet-53:
  仿ResNet, 与ResNet-101或ResNet-152准确率接近。

  基础网络如下。

参考了:

http://www.cnblogs.com/makefile/p/YOLOv3.html

https://blog.csdn.net/qq_37541097/article/details/81214953

https://pjreddie.com/darknet/

YOLO V3 原理的更多相关文章

  1. Pytorch从0开始实现YOLO V3指南 part1——理解YOLO的工作

    本教程翻译自https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/ 视频展示:https://w ...

  2. YOLO v3

    yolo为you only look once. 是一个全卷积神经网络(FCN),它有75层卷积层,包含跳跃式传递和降采样,没有池化层,当stide=2时用做降采样. yolo的输出是一个特征映射(f ...

  3. YOLO系列:YOLO v3解析

    本文好多内容转载自 https://blog.csdn.net/leviopku/article/details/82660381 yolo_v3 提供替换backbone.要想性能牛叉,backbo ...

  4. 深度学习笔记(十三)YOLO V3 (Tensorflow)

    [代码剖析]   推荐阅读! SSD 学习笔记 之前看了一遍 YOLO V3 的论文,写的挺有意思的,尴尬的是,我这鱼的记忆,看完就忘了  于是只能借助于代码,再看一遍细节了. 源码目录总览 tens ...

  5. Yolo V3整体思路流程详解!

    结合开源项目tensorflow-yolov3(https://link.zhihu.com/?target=https%3A//github.com/YunYang1994/tensorflow-y ...

  6. 非最大抑制,挑选和目标重叠框 yolo思想原理

    非最大抑制,挑选和目标重叠框 yolo思想原理 待办 https://blog.csdn.net/shuzfan/article/details/52711706 根据分类器类别分类概率做排序,(框的 ...

  7. YOLO v3算法介绍

    图片来自https://towardsdatascience.com/yolo-v3-object-detection-with-keras-461d2cfccef6 数据前处理 输入的图片维数:(4 ...

  8. 一文看懂YOLO v3

    论文地址:https://pjreddie.com/media/files/papers/YOLOv3.pdf论文:YOLOv3: An Incremental Improvement YOLO系列的 ...

  9. Pytorch从0开始实现YOLO V3指南 part5——设计输入和输出的流程

    本节翻译自:https://blog.paperspace.com/how-to-implement-a-yolo-v3-object-detector-from-scratch-in-pytorch ...

随机推荐

  1. Jmeter入门 浏览器设置代理服务器和录制脚本

    第一步: 可以设置浏览器代理,本文章推荐使用火狐浏览器 在浏览器-首选项--网络设置里面设置代理服务器 注意:端口号可以自行设置,但是不可以与本机其他代理产生冲突 第二步: 打开jmeter工具,添加 ...

  2. Java中9种常见的CMS GC问题分析与解决

    1. 写在前面 | 本文主要针对 Hotspot VM 中"CMS + ParNew"组合的一些使用场景进行总结.重点通过部分源码对根因进行分析以及对排查方法进行总结,排查过程会省 ...

  3. AT4828 [ABC152D] Handstand 2 TJ

    前言 洛谷题解,懂?( 题目链接 来一点不一样的方法. 正解:动态规划 / 打表数据暴力分析 考试半小时想出方法,最后输在了两个细节上. 写一篇题解以此纪念. 打表暴力程序 最开始打的暴力对拍,没想到 ...

  4. fastboot刷机小脚本

    在Windows系统下,一般刷机命令是在cmd路径下执行如下命令: 1.adb reboot bootloader2.fastboot flash boot +boot路径3.fastboot fla ...

  5. 洛谷P3052题解

    题面 看起来非常简单,但是细节多的一批的状压DP入门题. 我设 \(f_i\) 为 \(i\) 状态时最小分组数, \(g_i\) 为 \(i\) 状态时最后一组剩余空间. 对于每一个 \(i\) , ...

  6. 53. 最大子序和(剑指 Offer 42)

    53. 最大子序和(剑指 Offer 42) 知识点:数组:前缀和:哨兵:动态规划:贪心:分治: 题目描述 输入一个整型数组,数组中的一个或连续多个整数组成一个子数组.求所有子数组的和的最大值. 要求 ...

  7. Java 14 新功能介绍

    不做标题党,认认真真写个文章. 文章已经收录在 Github.com/niumoo/JavaNotes 和未读代码博客,点关注,不迷路. Java 14 早在 2019 年 9 月就已经发布,虽然不是 ...

  8. Windows根据端口号查找对应的进程和服务

    需求 1,我们在Win10安装一些Web服务时,会发现默认端口被占用,比如443端口被占用,808端口被占用,那么如何找出占用这些默认端口的进程和对应的服务呢? 2,系统安装完成后,会有一些应用对外开 ...

  9. Create Shortcut for SSH Hosts

    You frequently visit host 10.0.7.141 for example. It's a waste to type "ssh gcp@10.0.7.141" ...

  10. 用Autohotkey让Kitty命令行变得更好用

    下面的脚本实现Win+K键激活一个输入框,给出了kitty命令行常用的几种格式,基本可分为两种:连接保存好的模板(session)和完全手工连接,前者用-load加Session名称,后者需要在命令行 ...