Spark消费Kafka如何实现精准一次性消费?
1.定义
- 精确一次消费(Exactly-once) 是指消息一定会被处理且只会被处理一次。不多不少就一次处理。
如果达不到精确一次消费,可能会达到另外两种情况:
至少一次消费(at least once),主要是保证数据不会丢失,但有可能存在数据重复问题。
最多一次消费 (at most once),主要是保证数据不会重复,但有可能存在数据丢失问题。
如果同时解决了数据丢失和数据重复的问题,那么就实现了精确一次消费的语义了。
2. 问题如何产生
数据何时会丢失: 比如实时计算任务进行计算,到数据结果存盘之前,进程崩溃,假设在进程崩溃前kafka调整了偏移量,那么kafka就会认为数据已经被处理过,即使进程重启,kafka也会从新的偏移量开始,所以之前没有保存的数据就被丢失掉了。
数据何时会重复: 如果数据计算结果已经存盘了,在kafka调整偏移量之前,进程崩溃,那么kafka会认为数据没有被消费,进程重启,会重新从旧的偏移量开始,那么数据就会被2次消费,又会被存盘,数据就被存了2遍,造成数据重复。
3.解决方案
方案一:利用关系型数据库的事务进行处理
出现丢失或者重复的问题,核心就是偏移量的提交与数据的保存,不是原子性的。如果能做成要么数据保存和偏移量都成功,要么两个失败。那么就不会出现丢失或者重复了。
这样的话可以把存数据和偏移量放到一个事务里。这样就做到前面的成功,如果后面做失败了,就回滚前面那么就达成了原子性。
问题与限制
数据库选型受限, 只能使用支持事务的关系型数据库 ,如mysql, oracle ,无法使用其他功能强大的nosql数据库。
如果保存的数据量较大一个数据库节点不够,多个节点的话,还要考虑分布式事务的问题。做分布式事务,结构复杂,拖慢性能。
如果做本地事务 ,只能把分区数据提取到driver中进行保存,降低并发 ,增加executor到driver的数据传递io。
方案二:手动提交偏移量+幂等性处理
咱们知道如果能够同时解决数据丢失和数据重复问题,就等于做到了精确一次消费。
那咱们就各个击破。
首先解决数据丢失问题,办法就是要等数据保存成功后再提交偏移量,所以就必须手工来控制偏移量的提交时机。
但是如果数据保存了,没等偏移量提交进程挂了,数据会被重复消费。怎么办?那就要把数据的保存做成幂等性保存。即同一批数据反复保存多次,数据不会翻倍,保存一次和保存一百次的效果是一样的。如果能做到这个,就达到了幂等性保存,就不用担心数据会重复了。
难点
话虽如此,在实际的开发中手动提交偏移量其实不难,难的是幂等性的保存,有的时候并不一定能保证。所以有的时候只能优先保证的数据不丢失。数据重复难以避免。即只保证了至少一次消费的语义。
文章来源:https://blog.csdn.net/wangsl754/article/details/107479977?
Spark消费Kafka如何实现精准一次性消费?的更多相关文章
- 17-Flink消费Kafka写入Mysql
戳更多文章: 1-Flink入门 2-本地环境搭建&构建第一个Flink应用 3-DataSet API 4-DataSteam API 5-集群部署 6-分布式缓存 7-重启策略 8-Fli ...
- Spark Streaming消费Kafka Direct方式数据零丢失实现
使用场景 Spark Streaming实时消费kafka数据的时候,程序停止或者Kafka节点挂掉会导致数据丢失,Spark Streaming也没有设置CheckPoint(据说比较鸡肋,虽然可以 ...
- spark streaming - kafka updateStateByKey 统计用户消费金额
场景 餐厅老板想要统计每个用户来他的店里总共消费了多少金额,我们可以使用updateStateByKey来实现 从kafka接收用户消费json数据,统计每分钟用户的消费情况,并且统计所有时间所有用户 ...
- Spark streaming消费Kafka的正确姿势
前言 在游戏项目中,需要对每天千万级的游戏评论信息进行词频统计,在生产者一端,我们将数据按照每天的拉取时间存入了Kafka当中,而在消费者一端,我们利用了spark streaming从kafka中不 ...
- 本机spark 消费kafka失败(无法连接)
本机spark 消费kafka失败(无法连接) 终端也不报错 就特么不消费: 但是用console的consumer 却可以 经过各种改版本 ,测试配置,最后发现 只要注释掉 kafka 配置se ...
- spark streaming从指定offset处消费Kafka数据
spark streaming从指定offset处消费Kafka数据 -- : 770人阅读 评论() 收藏 举报 分类: spark() 原文地址:http://blog.csdn.net/high ...
- Spark Streaming消费Kafka Direct保存offset到Redis,实现数据零丢失和exactly once
一.概述 上次写这篇文章文章的时候,Spark还是1.x,kafka还是0.8x版本,转眼间spark到了2.x,kafka也到了2.x,存储offset的方式也发生了改变,笔者根据上篇文章和网上文章 ...
- spark streaming 消费 kafka入门采坑解决过程
kafka 服务相关的命令 # 开启kafka的服务器bin/kafka-server-start.sh -daemon config/server.properties &# 创建topic ...
- Spark Steaming消费kafka数据条数变少问题
对于基于Receiver 形式,我们可以通过配置 spark.streaming.receiver.maxRate 参数来限制每个 receiver 每秒最大可以接收的记录的数据:对于 Direct ...
随机推荐
- FreeRTOS-01-任务相关函数
3 任务相关API函数 任务相关函数如下: 任务创建和删除API函数 任务创建和删除实验(动态方法) 任务创建和删除实验(静态方法) 任务挂起和恢复API函数 任务挂起和恢复实验 3.1 任务创建AP ...
- Vue 可拖拽组件 Vue Smooth DnD 详解和应用演示
本文发布自 https://www.cnblogs.com/wenruo/p/15061907.html 转载请注明出处. 简介和 Demo 展示 最近需要有个拖拽列表的需求,发现一个简单好用的 Vu ...
- ThinkPHP3.2.3使用PHPExcel类操作excel导出excel
如何导入excel请看:ThinkPHP3.2.3使用PHPExcel类操作excel导入读取excel // 引入PHPExcel类 import("Org.Util.PHPExccel& ...
- Qt Creator内qmake配置静态编译
起因 利用QT Creator编写一些纯C/C++应用,默认配置下是动态编译 解决 解决起来很简单,这里只是附上配置备忘;-) msvc: { QMAKE_CFLAGS_RELEASE += /MT ...
- TS中 使用deprecated 实现对方法的迭代弃用
在日常开发中,我们会定义大量方法函数来提供给业务调用,可随着时间与业务的推进, 有些方法可能不切合当下需求, 或将被逐步废弃并替换到新的方法中, 例如 框架中 部分生命周期的废弃. 此时作为开发者就很 ...
- vue知识点---element el-date-picker 插件默认时间属性default-value怎么赋值?
参考网址: http://www.imooc.com/wenda/detail/509359 默认值,你放到 v-model里面就好. v-model="time" data(){ ...
- 媒体应用视频超分AI神器!360P视频一键转换HD
作为多媒体应用的开发者,你是否想为媒体播放器快速开发创新AI功能?例如: 在播放低画质视频过程中对其进行逐帧超分 让满屏飘飞的弹幕自动绕过画面的主体人物 HMS Core 6.0.0开放的多媒体管线服 ...
- BUUCTF-[HCTF 2018]admin(Unicode欺骗&伪造session)
目录 方法一:Unicode欺骗 方法二:伪造session 参考文章 记一道flask下session伪造的题. 方法一:Unicode欺骗 拿到题目f12提示you are not admin,显 ...
- Android开发如何准备技术面试(含Android面试押题)
今年毋庸置疑是找工作的寒冬,每一个出来找工作的同学都是值得尊敬的.现在找工作,虽然略难,但是反过来看也会逼迫我们成为更加优秀的自己. 但是不管是旺季还是寒冬,有一些优秀的同学找工作还是挺顺利的.所以说 ...
- 两万字长文,彻底搞懂Kafka!
1.为什么有消息系统 1.解耦合 2.异步处理 例如电商平台,秒杀活动. 一般流程会分为: 风险控制 库存锁定 生成订单 短信通知 更新数据 通过消息系统将秒杀活动业务拆分开,将不急需处理的业务放在后 ...