TensorRT深度学习训练和部署图示
TensorRT深度学习训练和部署
NVIDIA TensorRT是用于生产环境的高性能深度学习推理库。功率效率和响应速度是部署的深度学习应用程序的两个关键指标,因为它们直接影响用户体验和所提供服务的成本。Tensor RT自动优化训练好的神经网络,以提高运行时性能,与仅使用通用CPU的深度学习推理系统相比,Tesla P100 GPU的能源效率(每瓦性能)提高多达16倍(见图1)。图2显示了使用TensorRT和相对复杂的GoogLenet神经网络架构运行NVIDIA Tesla P100和K80进行推理的性能。
本文将展示如何使用Tensor RT,在基于GPU的部署平台上,从经过训练的深度神经网络中,获得最佳效率和性能。

图1:NVIDIA Tensor RT通过Tesla P100上的FP16,为神经网络推理提供了16倍的高能效。

图2:NVIDIA Tensor RT通过Tesla P100上的FP16提供了23倍的神经网络推理性能。
用深度神经网络解决有监督的机器学习问题,涉及两个步骤。
- 第一步是使用GPU在大量标记数据上训练深度神经网络。在此步骤中,神经网络学习了数百万个权重或参数,从而使其能够映射输入数据示例,以纠正响应。训练要求迭代前后遍历网络,因为相对于网络权重,目标函数被最小化了。通常会对几种模型进行训练,并针对训练期间未看到的数据验证准确性,以便估算实际性能。
- 下一步-推论-使用训练好的模型对新数据进行预测。在此步骤中,训练好的模型,用于在生产环境中运行的应用程序,例如数据中心,汽车或嵌入式平台。对于某些应用,例如自动驾驶,推理是实时进行的,因此高吞吐量至关重要。






TensorRT深度学习训练和部署图示的更多相关文章
- 基于NVIDIA GPUs的深度学习训练新优化
基于NVIDIA GPUs的深度学习训练新优化 New Optimizations To Accelerate Deep Learning Training on NVIDIA GPUs 不同行业采用 ...
- MLPerf结果证实至强® 可有效助力深度学习训练
MLPerf结果证实至强 可有效助力深度学习训练 核心与视觉计算事业部副总裁Wei Li通过博客回顾了英特尔这几年为提升深度学习性能所做的努力. 目前根据英特尔 至强 可扩展处理器的MLPerf结果显 ...
- 中文译文:Minerva-一种可扩展的高效的深度学习训练平台(Minerva - A Scalable and Highly Efficient Training Platform for Deep Learning)
Minerva:一个可扩展的高效的深度学习训练平台 zoerywzhou@gmail.com http://www.cnblogs.com/swje/ 作者:Zhouwan 2015-12-1 声明 ...
- java web应用调用python深度学习训练的模型
之前参见了中国软件杯大赛,在大赛中用到了深度学习的相关算法,也训练了一些简单的模型.项目线上平台是用java编写的web应用程序,而深度学习使用的是python语言,这就涉及到了在java代码中调用p ...
- 深度学习训练过程中的学习率衰减策略及pytorch实现
学习率是深度学习中的一个重要超参数,选择合适的学习率能够帮助模型更好地收敛. 本文主要介绍深度学习训练过程中的6种学习率衰减策略以及相应的Pytorch实现. 1. StepLR 按固定的训练epoc ...
- 深度学习环境搭建部署(DeepLearning 神经网络)
工作环境 系统:Ubuntu LTS 显卡:GPU NVIDIA驱动:410.93 CUDA:10.0 Python:.x CUDA以及NVIDIA驱动安装,详见https://www.cnblogs ...
- 一天搞懂深度学习-训练深度神经网络(DNN)的要点
前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...
- 【神经网络与深度学习】Caffe部署中的几个train-test-solver-prototxt-deploy等说明
1:神经网络中,我们通过最小化神经网络来训练网络,所以在训练时最后一层是损失函数层(LOSS), 在测试时我们通过准确率来评价该网络的优劣,因此最后一层是准确率层(ACCURACY). 但是当我们真正 ...
- 深度学习 | 训练网络trick——mixup
1.mixup原理介绍 mixup 论文地址 mixup是一种非常规的数据增强方法,一个和数据无关的简单数据增强原则,其以线性插值的方式来构建新的训练样本和标签.最终对标签的处理如下公式所示,这很简单 ...
随机推荐
- 总结:composer的install和require和update指令。到底什么时候用什么指令
https://packagist.org 相当于是应用商店
- OAuth2(未完待续)
一.OAuth2是什么?OAuth2解决了什么问题 1.OAuth2是第三方授权协议,用于支撑认证和授权 2.OAuth2中的角色划分: 资源拥有者 客户端 资源服务器 授权服务器 二.OAuth2怎 ...
- 从苏宁电器到卡巴斯基第28篇:难忘的三年硕士时光 VI
想要毕业,还需满足一个要求 像我们这种三年制的工科硕士,想要毕业的话,除了需要按照要求完成毕业论文以外,还需要在相关期刊上发表一篇与毕业论文相关的小论文,或者申请软件著作权,或者申请专利.我不知道别的 ...
- hdu4561 连续最大积
题意: 连续最大积 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Total ...
- hdu4915 判断括号匹配
题意: 问你括号匹配是否唯一,三种字符'(','?',')',问号可以变成任何字符. 思路: 首先我们要学会判断当前串是否成立?怎么判断?我的方法是跑两遍,开三个变变量 s1 ...
- 内核模式下的线程同步的分析(Windows核心编程)
内核模式下的线程同步 内核模式下的线程同步是用户模式下的线程同步的扩展,因为用户模式下的线程同步有一定的局限性.但用户模式下线程同步的好处是速度快,不需要切换到内核模式(需要额外的 CPU 时间).通 ...
- Linux下部署Django项目
目录 安装python3.X环境 安装部署开启django 由于Linux系统默认自带的是2.X环境,所以我们需要去安装3.X环境的python. 安装python3.X环境 1.使用下面的命令下载P ...
- Andrew Ng机器学习算法入门(十):过拟合问题解决方法
在使用机器学习对训练数据进行学习和分类的时候,会出现欠拟合和过拟合的问题.那么什么是欠拟合和过拟合问题呢?
- CCNA 第二章 以太网回顾
1:半双工和全双工 (1):半双工:类似于单车道: (2):全双工:类似是双向多车道: 2:思科三层模型 (1): (2):核心层.集散层(汇聚层).接入层各功能: 1:核心层:大量数据快速交换:不要 ...
- 谁动了我的 Linux?原来 history 可以这么强大!
当我们频繁使用 Linux 命令行时,有效地使用历史记录,可以大大提高工作效率. 在平时 Linux 操作过程中,很多命令是重复的,你一定不希望大量输入重复的命令.如果你是系统管理员,你可能需要对用户 ...