Data Mining UVA - 1591
Dr. Tuple is working on the new data-mining application for Advanced Commercial Merchandise Inc. One of the subroutines for this application works with two arrays P and Q containing N records of data each (records are numbered from 0 to N − 1). Array P contains hash-like structure with keys. Array P is used to locate record for processing and the data for the corresponding record is later retrieved from the array Q.
All records in array P have a size of SP bytes and records in array Q have size of SQ bytes. Dr. Tuple needs to implement this subroutine with the highest possible performance because it is a hot-spot of the whole data-mining application. However, SP and SQ are only known at run-time of application which complicates or makes impossible to make certain well-known compile-time optimizations.
The straightforward way to find byte-offset of i-th record in array P is to use the following formula:
Pofs(i) = SP · i, (1)
and the following formula for array Q:
Qofs(i) = SQ · i. (2)
However, multiplication computes much slower than addition or subtraction in modern processors. Dr. Tuple avoids usage of multiplication while scanning array P by keeping computed byte-offset Pofs(i) of i-th record instead of its index i in all other data-structures of data-mining application. He uses the following simple formulae when he needs to compute byte-offset of the record that precedes or follows i-th record in array P:
Pofs(i + 1) = Pofs(i) + SP
Pofs(i − 1) = Pofs(i) − SP
Whenever a record from array P is located by either scanning of the array or by taking Pofs(i) from other data structures, Dr. Tuple needs to retrieve information from the corresponding record in array Q. To access record in array Q its byte-offset Qofs(i) needs to be computed. One can immediately derive formula to compute Qofs(i) with known Pofs(i) from formulae (1) and (2):
Qofs(i) = Pofs(i)/SP · SQ (3)
Unfortunately, this formula not only contains multiplication, but also contains division. Even though only integer division is required here, it is still an order of magnitude slower than multiplication on modern processors. If coded this way, its computation is going to consume the most of CPU time in data-mining application for ACM Inc.
After some research Dr. Tuple has discovered that he can replace formula (3) with the following fast formula:
Qofs’(i) = (Pofs(i) + Pofs(i) << A) >> B (4)
where A and B are non-negative integer numbers, “<< A” is left shift by A bits (equivalent to integer multiplication by 2A), “ >> B” is right shift by B bits (equivalent to integer division by 2B).
This formula is an order of magnitude faster than (3) to compute, but it generally cannot always produce the same result as (3) regardless of the choice for values of A and B. It still can be used if one is willing to sacrifice some extra memory.
Conventional layout of array Q in memory (using formula (2)) requires N · SQ bytes to store the entire array. Dr. Tuple has found that one can always choose such K that if he allocates K bytes of memory for the array Q (where K ≤ N ·SQ) and carefully selects values for A and B, the fast formula (4) will give non-overlapping storage locations for each of the N records of array Q.
Your task is to write a program that finds minimal possible amount of memory K that needs to be allocated for array Q when formula (4) is used. Corresponding values for A and B are also to be found. If multiple pairs of values for A and B give the same minimal amount of memory K, then the pair where A is minimal have to be found, and if there is still several possibilities, the one where B is minimal. You shall assume that integer registers that will be used to compute formula (4) are wide enough so that overflow will never occur.
Input
Input consists of several datasets. Each dataset consists of three integer numbers N, SP, and SQ separated by spaces (1 ≤ N ≤ 2^20,1 ≤ SP ≤ 2^10,1 ≤ SQ ≤ 2^10).
Output
For each dataset, write to the output file a single line with three integer numbers K, A, and B separated by spaces.
Sample Input
20 3 5
1024 7 1
Sample Output
119 0 0
1119 2 5
HINT
这个题是参照vj上下面评论的一个大佬写的,虽然想到了等差之类的,但没有想到k的取值公式。这个题从公式上面看可以知道是一个等差公式,那么要保证映射后的下标不会出现位置重复那么公差就必须(p + (p << i)) >> j)/q大于1,否则,比如1和1.2和1.8转换为整数后都是1,那么当公差大于1的话,计算出来的每一个下标比前一个都大于1就不会出现重复的现象。
下一个要解决的问题就是如何来表示k的取值,因为每一个映射的下标都不会重复,那么最后一个最大的映射之后获得的也是最大的就是k的值,然后每一次比较获得更小的一个。因此比较公式就是(p * (n - 1) + ((p * (n - 1)) << i)) >> j) + q。最后一个是n-1,不是n,0......n-1。另外需要注意的是位运算符的优先级以及int 范围的k很可能会越界。下面是代码:
Accepted
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
int main()
{
long long int n, p, q;
while (scanf("%lld %lld %lld", &n, &p, &q) != EOF)
{
long long int k = 9223372036854775807;
int a, b;
for (int i = 0;i < 32;i++)
{
for (int j = 0;j < 32;j++)
{
if ((p + (p << i)) >> j >= q && (k > ((p * (n - 1) + ((p * (n - 1)) << i)) >> j) + q))
{
k = ((p * (n - 1) + ((p * (n - 1)) << i)) >> j) + q;
a = i;b = j;
}
}
}
printf("%lld %d %d\n", k, a, b);
}
}
Data Mining UVA - 1591的更多相关文章
- Distributed Databases and Data Mining: Class timetable
Course textbooks Text 1: M. T. Oszu and P. Valduriez, Principles of Distributed Database Systems, 2n ...
- What is the most common software of data mining? (整理中)
What is the most common software of data mining? 1 Orange? 2 Weka? 3 Apache mahout? 4 Rapidminer? 5 ...
- What’s the difference between data mining and data warehousing?
Data mining is the process of finding patterns in a given data set. These patterns can often provide ...
- A web crawler design for data mining
Abstract The content of the web has increasingly become a focus for academic research. Computer prog ...
- Datasets for Data Mining and Data Science
https://github.com/mattbane/RecommenderSystem http://grouplens.org/datasets/movielens/ KDDCUP-2012官网 ...
- cluster analysis in data mining
https://en.wikipedia.org/wiki/K-means_clustering k-means clustering is a method of vector quantizati ...
- Weka 3: Data Mining Software in Java
官方网站: Weka 3: Data Mining Software in Java 相关使用方法博客 WEKA使用教程(经典教程转载) (实例数据:bank-data.csv) Weka初步一.二. ...
- data mining,machine learning,AI,data science,data science,business analytics
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics ...
- 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...
随机推荐
- 微信小程序:优化页面要渲染的属性
问题:页面中只用到四个属性:goods_name,goods_price,goods_introduce,pics,但是整个对象中有22个属性,小程序中建议:data中只存放标签中要使用的数据,而现在 ...
- 腾讯数据库tdsql部署与验证
环境准备 | 主机 | IP | 配置(最低要求配置) | | :----- | ------------- | ------------------ | | node-1 | 192.168.1.8 ...
- Java基本概念:面向对象
一.简介 面向过程的思维模式是简单的线性思维,思考问题首先陷入第一步做什么.第二步做什么的细节中. 面向对象的思维模式说白了就是分类思维模式.思考问题首先会解决问题需要哪些分类,然后对这些分类进行单独 ...
- golang知识总结
目录 1.slice扩容规则 2.内存寻址.内存对齐,go结构体内存对齐策略 3.go语言map类型分析 3.1 hash冲突 3.2 hash表扩容 3.3 go语言中的map结构是hash表. 3 ...
- 别再恐惧 IP 协议(万字长文 | 多图预警)
尽人事,听天命.博主东南大学硕士在读,热爱健身和篮球,乐于分享技术相关的所见所得,关注公众号 @ 飞天小牛肉,第一时间获取文章更新,成长的路上我们一起进步 本文已收录于 「CS-Wiki」Gitee ...
- MySQL提权 通过UDF
目录 UDF是什么 命令执行 文本写入 Example: 远程写入 反弹Shell 提权 UDF是什么 参考:https://www.cnblogs.com/litlife/p/9030673.htm ...
- macOS命令行切换Python版本
目录 brew安装anaconda3 anaconda3环境变量设置 安装双版本 命令后切换python环境 pip ide vscode set 参考 brew安装anaconda3 brew ca ...
- Numpy的终极备忘录
转: Numpy的终极备忘录 作者|Rashida Nasrin Sucky编译|VK来源|Towards Data Science Python是开源的.对于使用python的数据科学家来说,Num ...
- ASP.NET Core重复读取Request.Body
//HttpContext context.Request.EnableRewind(); //创建缓冲区存放Request.Body的内容,从而允许反复读取Request.Body的Stream u ...
- 【python+selenium的web自动化】- 元素的常用操作详解(二)
如果想从头学起selenium,可以去看看这个系列的文章哦! https://www.cnblogs.com/miki-peng/category/1942527.html 本篇主要内容:1.鼠标 ...