生成器的定义

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator

生成器的创建

生成器可以用两种方式创建:

  • 生成器表达式 (里面是推导式,外面用圆括号)

  • 生成器函数 (用def定义,里面含有yield)

生成器表达式

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

li = [x * x for x in range(10)]
print(li)
# [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] g = (x * x for x in range(10))
print(g)
# <generator object <genexpr> at 0x000001A72D5D2E08>

生成器函数(yield)

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
print(b)
a, b = b, a + b
n = n + 1
return 'done' # 注意,这里的赋值语句 a, b = b, a + b
# 相当于
# t = (b, a + b) # t是一个tuple
# a = t[0]
# b = t[1]
# 但不必显式写出临时变量t就可以赋值。

上面的函数可以输出斐波那契数列的前N个数:

print(fib(6))
# 1
# 1
# 2
# 3
# 5
# 8
# done

仔细观察,可以看出,fib函数实际上是定义了斐波拉契数列的推算规则,可以从第一个元素开始,推算出后续任意的元素,这种逻辑其实非常类似generator。

也就是说,上面的函数和generator仅一步之遥。要把fib函数变成generator,只需要把print(b)改为yield b就可以了:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done'

这就是定义generator的另一种方法。如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator:

f = fib(6)
print(f) # <generator object fib at 0x000001AB51492E08>

生成器的调用

调用生成器的方式:

  • next()函数
  • for循环
  • for循环 + next()函数

next()函数

创建lig的区别仅在于最外层的[]()li是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

g = (x * x for x in range(10))

print(next(g))  # 0
print(next(g)) # 1
print(next(g)) # 4
print(next(g)) # 9
print(next(g)) # 16
print(next(g)) # 25
print(next(g)) # 36
print(next(g)) # 49
print(next(g)) # 64
print(next(g)) # 81
print(next(g))
'''
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 18, in <module>
print(next(g))
StopIteration
'''
# 每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

for循环

当然,上面这种不断调用next(g)实在是太变态了,我们可以使用for循环来调用generator,因为generator也是可迭代对象:

g = (x * x for x in range(10))

for i in g:
print(i) # 0
# 1
# 4
# 9
# 16
# 25
# 36
# 49
# 64
# 81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

但是需要注意的是,当数据量过大时,会形成形成类似于死循环的效果(这里可以自己试验一下),所以就提出了下面的调用方法

for + next()

g = (x * x for x in range(10))

# 调用几次循环几次
for i in range(3):
print(next(g)) # 0
# 1
# 4

注意点

generator和函数的执行流程不一样:

  • 函数是顺序执行,遇到return语句或者最后一行函数语句就返回。

  • 而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。

举个简单的例子,定义一个generator,依次返回数字1,2,3:

def odd():
print('step 1')
yield 1
print('step 2')
yield(3)
print('step 3')
yield(5)

调用该generator时,首先要生成一个generator对象,然后用next()函数不断获得下一个返回值:

o = odd()
next(o)
# step 1 next(o)
# step 2 next(o)
# step 3 next(o)
'''
Traceback (most recent call last):
File "D:/python_project/mxxl/test/test.py", line 23, in <module>
next(o)
StopIteration
'''

可以看到,odd不是普通函数,而是generator,在执行过程中,遇到yield就中断,下次又继续执行。执行3次yield后,已经没有yield可以执行了,所以,第4次调用next(o)就报错。

回到fib的例子,我们在循环过程中不断调用yield,就会不断中断。当然要给循环设置一个条件来退出循环,不然就会产生一个无限数列出来。

同样的,把函数改成generator后,我们基本上从来不会用next()来获取下一个返回值,而是直接使用for循环来迭代:

def fib(max):
n, a, b = 0, 0, 1
while n < max:
yield b
a, b = b, a + b
n = n + 1
return 'done' for i in fib(6):
print(i) # 1
# 1
# 2
# 3
# 5
# 8

但是用for循环调用generator时,发现拿不到generator的return语句的返回值。如果想要拿到返回值,必须捕获StopIteration错误,返回值包含在StopIterationvalue中:

g = fib(6)
while True:
try:
x = next(g)
print('g:', x)
except StopIteration as e:
print('Generator return value:', e.value)
break
# g: 1
# g: 1
# g: 2
# g: 3
# g: 5
# g: 8
# Generator return value: done

python基础(补充):python三大器之生成器的更多相关文章

  1. Python三大器之生成器

    Python三大器之生成器 生成器初识 什么是生成器 生成器本身属于迭代器.继承了迭代器的特性,惰性求值,占用内存空间极小. 为什么要有生成器 我们想使用迭代器本身惰性求值的特点创建出一个可以容纳百万 ...

  2. (转)python基础之迭代器协议和生成器(一)

    一 递归和迭代 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前 ...

  3. 二十一. Python基础(21)--Python基础(21)

    二十一. Python基础(21)--Python基础(21) 1 ● 类的命名空间 #对于类的静态属性:     #类.属性: 调用的就是类中的属性     #对象.属性: 先从自己的内存空间里找名 ...

  4. python基础之迭代器协议和生成器

    迭代器和生成器补充:http://www.cnblogs.com/luchuangao/p/6847081.html 一 递归和迭代 略 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个ne ...

  5. python基础之迭代器协议和生成器(一)

    一 递归和迭代 二 什么是迭代器协议 1.迭代器协议是指:对象必须提供一个next方法,执行该方法要么返回迭代中的下一项,要么就引起一个StopIteration异常,以终止迭代 (只能往后走不能往前 ...

  6. python基础之 迭代器回顾,生成器,推导式

    1.迭代器回顾 可迭代对象:Iterable 可以直接作用于for循环的对象统称为可迭代对象:Iterable.因为可迭代对象里面存在可迭代协议,所以才会被迭代 可迭代对象包括: 列表(list) 元 ...

  7. python基础补充内容

    知识内容: 1.三元运算表达式 2.python代码编写规范 3.模块导入与使用 4.python文件名 5.python脚本的"__name__"属性 6.python之禅 一. ...

  8. python基础7 ---python函数

    python基础知识 一.闭包函数 1.闭包函数的定义:在一个内部函数中,在对外部作用域(但不是在全局作用域)的变量进行引用,那么内部函数就被认为是闭包. 2.闭包函数的特点:自带作用域和延迟计算 补 ...

  9. python基础1 ---python简介

    python基础 一.python前言 1.什么是编程语言 编程语言是程序员与计算机之间沟通的介质. 2.编程语言的分类 机器语言:机器语言是用二进制代码表示的计算机能直接识别和执行的一种机器指令的集 ...

  10. Python基础+Pythonweb+Python扩展+Python选修四大专题 超强麦子学院Python35G视频教程

    [保持在百度网盘中的, 可以在观看,嘿嘿 内容有点多,要想下载, 回复后就可以查看下载地址,资源收集不易,请好好珍惜] 下载地址:http://www.fu83.cc/ 感觉文章好,可以小手一抖 -- ...

随机推荐

  1. NGK英国路演圆满结束,未来科技布局看好NGK公链技术

    近日,NGK全球路演英国站在首都伦敦圆满结束.区块链业内专家.各投行精英.各市场节点代表.八大产业代表参加了此次路演.同时,英国经济学人.每日邮报.金融时报等近百家财经媒体对此路演进行了大力报道.并且 ...

  2. nginx反向代理理解

    实际开发中,会有不同的环境: - 开发环境:自己的电脑- 测试环境:提供给测试人员使用的环境- 预发布环境:数据是和生成环境的数据一致,运行最新的项目代码进去测试- 生产环境:项目最终发布上线的环境 ...

  3. iOS写在定制相机之前

    问题 不是所有的拍照UIImagePickerController都能搞定,理由如下: 1.产品不整点幺蛾子,哪来体验创新 2.设计不整点幺蛾子,怎能体现用心 3.运营:这体验跟某宝某信咋不一样??? ...

  4. JSON的stringify和parse方法

    一.JSON.parse() 方法用于将一个 JSON 字符串转换为对象. 以下代码为将字符串解析为对象,然后再赋值给对象 //页面初始化完成加载,option是传递的参数 onLoad: funct ...

  5. oracle ORA-00257

    su - oracle sqlplus /nolog conn / as sysdba select * from v$flash_recovery_area_usage; select sum(pe ...

  6. 使用 xunit 编写测试代码

    使用 xunit 编写测试代码 Intro xunit 是 .NET 里使用非常广泛的一个测试框架,有很多测试项目都是在使用 xunit 作为测试框架,不仅仅有很多开源项目在使用,很多微软的项目也在使 ...

  7. POJ-3436(网络流+最大流+输出路径)

    ACM Computer Factory POJ-3436 题目就是一个工厂n个加工机器,每个机器有一个效率w,q个材料入口,q个材料出口,每个口有三个数表示状态,1表示一定有入/出的材料,0表示没有 ...

  8. SnowNLP——获取关键词(keywords(1))

    一.SnowNLP的获取文本关键词 前面介绍了SnowNLP的获取关键词的方法,这里再重现一下 1 from snownlp import SnowNLP 2 # 提取文本关键词,总结3个关键词 3 ...

  9. 靶场练习-Sqli-labs通关记录(1-4关)

                              0x00 实验环境 本地:Win 10 靶场:sqli-labs(共65关,每日一关) 0x02 通关记录 简介:一天一关! (1)第一关: 简单的 ...

  10. AbstractQueuedSynchronizer之AQS

    一.可重入锁 可参考:可重入锁和递归锁 1,定义 指的是同一线程外层函数获得锁后,再进入该线程的内层方法会自动获取锁(前提:锁对象是同一个对象). Java中的ReentranLock(显示锁)和Sy ...