HMM实现中文分词
链接:https://pan.baidu.com/s/1uBjLC61xm4tQ9raDa_M1wQ 提取码:f7l1
推荐:https://blog.csdn.net/longgb123/article/details/78154295
import sys
sys.path.append('保存文件的路径') #设置路径
# 下面三个文件在上面
from prob_emit import P as p_emit
from prob_start import P as p_start
from prob_trans import P as p_trans obs = '今天我来到北京清华大学' #观察值
states = 'BMES' V = [{}]
path = {} prev_states = {
'B': 'ES', # t时刻:t-1时刻
'M': 'BM',
'E': 'BM',
'S': 'SE'
} # 初始化 第一个字符作为 'BMES' 的概率
for y in states:
V[0][y] = p_start[y] + p_emit[y][obs[0]]
path[y] = y #概率: 输出概率(独立性概率:第k个字符状态为y的概率) + 转换概率(y0 --> y ) + 上一个字符状态为y0的概率(当前状态与上一个字符的状态有关) for k in range(1, len(obs)):
t0 = {} # 储存概率
path0 = {} # 储存路径 for y in states:
em_p = p_emit[y][obs[k]] # 输出概率 表示 第 k 个字符状态为 y 时 的输出概率 (prob, s0) = max((em_p+p_trans[y0][y]+V[-1][y0], y0) for y0 in prev_states[y]) # 动态规划
#上面的prob s0 就是在下面的每个循环中取tmp_prob tmp_s0 中取得最大值
# for y0 in prev_states[y]: # prev_state[y] 表示 t时刻 状态为 y 时的 t-1时刻可能出现的状态
# tmp_prob = em_p + p_trans[y0][y] + V[-1][y0]
# tmp_s0 = y0 t0[y] = prob
path0[y] = path[s0] + y path = path0
V.append(t0)
path
(prob, s0) = max((V[-1][y], y) for y in 'ES') s2 = []
for i, char in enumerate(obs):
sign = path[s0][i]
if(sign == 'B'):
begin = i
elif sign == 'E':
s2.append(obs[begin: i+1])
elif sign == 'S':
s2.append(obs[i])
else :
pass
s2
HMM实现中文分词的更多相关文章
- 自制基于HMM的中文分词器
不像英文那样单词之间有空格作为天然的分界线, 中文词语之间没有明显界限.必须采用一些方法将中文语句划分为单词序列才能进一步处理, 这一划分步骤即是所谓的中文分词. 主流中文分词方法包括基于规则的分词, ...
- 转:从头开始编写基于隐含马尔可夫模型HMM的中文分词器
http://blog.csdn.net/guixunlong/article/details/8925990 从头开始编写基于隐含马尔可夫模型HMM的中文分词器之一 - 资源篇 首先感谢52nlp的 ...
- 【中文分词】隐马尔可夫模型HMM
Nianwen Xue在<Chinese Word Segmentation as Character Tagging>中将中文分词视作为序列标注问题(sequence labeling ...
- 自制基于HMM的python中文分词器
不像英文那样单词之间有空格作为天然的分界线, 中文词语之间没有明显界限.必须采用一些方法将中文语句划分为单词序列才能进一步处理, 这一划分步骤即是所谓的中文分词. 主流中文分词方法包括基于规则的分词, ...
- HMM(隐马尔科夫)用于中文分词
隐马尔可夫模型(Hidden Markov Model,HMM)是用来描述一个含有隐含未知参数的马尔可夫过程. 本文阅读了2篇blog,理解其中的意思,附上自己的代码,共同学习. 一.理解隐马尔科夫 ...
- 【中文分词】二阶隐马尔可夫模型2-HMM
在前一篇中介绍了用HMM做中文分词,对于未登录词(out-of-vocabulary, OOV)有良好的识别效果,但是缺点也十分明显--对于词典中的(in-vocabulary, IV)词却未能很好地 ...
- ANSJ中文分词使用方法
一.前言 之前做solr索引的时候就使用了ANSJ进行中文分词,用着挺好,然而当时没有写博客记录的习惯.最近又尝试了好几种JAVA下的中文分词库,个人感觉还是ANSJ好用,在这里简单总结之. 二.什么 ...
- R语言︱文本挖掘之中文分词包——Rwordseg包(原理、功能、详解)
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:与前面的RsowballC分词不同的 ...
- Python中文分词 jieba
三种分词模式与一个参数 以下代码主要来自于jieba的github,你可以在github下载该源码 import jieba seg_list = jieba.cut("我来到北京清华大学& ...
随机推荐
- Apache Flink 1.12.0 正式发布,DataSet API 将被弃用,真正的流批一体
Apache Flink 1.12.0 正式发布 Apache Flink 社区很荣幸地宣布 Flink 1.12.0 版本正式发布!近 300 位贡献者参与了 Flink 1.12.0 的开发,提交 ...
- Linux shell脚本全面学习(一)
1. Linux 脚本编写基础 1.1 语法基本介绍 1.1.1 开头 程序必须以下面的行开始(必须方在文件的第一行): #!/bin/sh 符号#!用来告诉系统它后面的参数是用来执行该文件的程序.在 ...
- 关于Ajax 的 cache 属性 (Day_34)
最近做项目,在某些页面显示,ajax刷新总是拿不到新内容,时常需要清除缓存,才能到达想要的效果. 经过再次查看文档,最后加了一行属性:cache:false 即可解决问题 我们先看下文档的说明: 可以 ...
- 记一次 .NET 某电商交易平台Web站 CPU爆高分析
一:背景 1. 讲故事 已经连续写了几篇关于内存暴涨的真实案例,有点麻木了,这篇换个口味,分享一个 CPU爆高 的案例,前段时间有位朋友在 wx 上找到我,说他的一个老项目经常收到 CPU > ...
- systemverilog动态数组
- 动态更换animator的animatorcontroller
你可以这样 Animator animator = this.gameObject.GetComponent<Animator>(); animator.runtimeAnimatorCo ...
- Redis(二) 数据类型操作指令以及对应的RedisTemplate方法
1.Redis key值操作以及RedisTemplate对应的API 本文默认使用RedisTemplate,关于RedisTemplate和StringRedisTemplate的区别如下 Red ...
- 为什么edge AI是一个无需大脑的人
为什么edge AI是一个无需大脑的人 Why edge AI is a no-brainer 德勤预计,到2020年,将售出超过7.5亿个edge AI芯片,即在设备上而不是在远程数据中心执行或加速 ...
- jmeter的参数化实现
背景: 在实际的测试工作中,我们经常需要对多组不同的输入数据,进行同样的测试操作步骤,以验证我们的软件的功能.这种测试方式在业界称为数据驱动测试,而在实际测试工作中,测试工具中实现不同数据输入的过程称 ...
- SpringBoot注解 + 详解
可以使用Ctrl + F搜索,也可以右侧目录自行检索 @SpringBootApplication 包含了@ComponentScan.@Configuration和@EnableAutoConfig ...