1246 - Colorful Board
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is
|x1 - x2| + |y1 - y2|
For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.
After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.
You have to determine how many ways to color the board using those K colors.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case starts with a line containing three integers M, N, K (0 ≤ M, N ≤ 19, 1 ≤ K ≤ 50).
Output
For each case, print the case number and the number of ways you can color the board. The result can be large, so print the result modulo 1000000007.
Sample Input |
Output for Sample Input |
4 0 0 1 0 0 2 5 5 2 5 5 1 |
Case 1: 1 Case 2: 2 Case 3: 2 Case 4: 0 |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
You are given a rectangular board. You are asked to draw M horizontal lines and N vertical lines in that board, so that the whole board will be divided into (M+1) x (N+1) cells. So, there will be M+1 rows each of which will exactly contain N+1 cells or columns. The yth cell of xth row can be called as cell(x, y). The distance between two cells is the summation of row difference and column difference of those two cells. So, the distance between cell(x1, y1) and cell(x2, y2) is
|x1 - x2| + |y1 - y2|
For example, the distance between cell (2, 3) and cell (3, 2) is |2 - 3| + |3 - 2| = 1 + 1 = 2.
After that you have to color every cell of the board. For that you are given K different colors. To make the board more beautiful you have to make sure that no two cells having the same color can have odd distance between them. For example, if you color cell (3, 5) with red, you cannot color cell (5, 8) with red, as the distance between them is 5, which is odd. Note that you can keep some color unused, but you can't keep some cell uncolored.
You have to determine how many ways to color the board using those K colors.
Input
Input starts with an integer T (≤ 20000), denoting the number of test cases.
Each case starts with a line containing three integers M, N, K (0 ≤ M, N ≤ 19, 1 ≤ K ≤ 50).
Output
For each case, print the case number and the number of ways you can color the board. The result can be large, so print the result modulo 1000000007.
Sample Input |
Output for Sample Input |
4 0 0 1 0 0 2 5 5 2 5 5 1 |
Case 1: 1 Case 2: 2 Case 3: 2 Case 4: 0 |

1 #include<stdio.h>
2 #include<algorithm>
3 #include<string.h>
4 #include<iostream>
5 using namespace std;
6 typedef long long LL;
7 const LL N= 1000000007;
8 LL yan[1005][1005];
9 LL STL[1005][1005];
10 LL pp[1005];
11 LL quick(LL n,LL m);
12 int main(void)
13 {
14 int i,j,k;
15 scanf("%d",&k);
16 int s;
17 yan[0][0]=1;
18 for(i=1; i<=1000; i++)
19 {
20 for(j=0; j<=i; j++)
21 {
22 if(j==0||i==j)
23 yan[i][j]=1;
24 else
25 {
26 yan[i][j]=(yan[i-1][j]+yan[i-1][j-1])%N;
27 }
28 }
29 }
30 pp[0]=1;
31 for(i=1;i<=1000;i++)
32 pp[i]=(pp[i-1]*i)%N;
33 memset(STL,0,sizeof(STL));
34 STL[0][0]=1;
35 STL[1][0]=0;
36 STL[1][1]=1;
37 for(i=2; i<=1000; i++)
38 {
39 for(j=1; j<=i; j++)
40 {
41 if(j==1||i==j)
42 STL[i][j]=1;
43 else
44 {
45 STL[i][j]=((STL[i-1][j]*j)%N+STL[i-1][j-1])%N;
46 }
47 }
48 }
49 for(s=1; s<=k; s++)
50 {
51 int x1,x2,x3,x4;
52 scanf("%d %d %d",&x1,&x2,&x3);
53 x1+=1;
54 x2+=1;
55 LL sum=(x1*x2);
56 LL he=(sum+1)/2;
57 LL cnt=0;
58 for(i=1; i<=min((LL)x3,he); i++)
59 {
60 LL x=x3-i;
61 LL kk=quick(x,sum-he);
62 LL ak=((STL[he][i]*yan[x3][i]%N)*kk)%N;
63 cnt=(cnt+ak*pp[i]%N)%N;
64 }
65 printf("Case %d: ",s);
66 printf("%lld\n",cnt);
67 }
68 return 0;
69 }
70
71 LL quick(LL n,LL m)
72 {
73 LL ans=1;n%=N;
74 while(m)
75 {
76 if(m&1)
77 ans=(ans*n)%N;
78 n=(n*n)%N;
79 m/=2;
80 }
81 return ans;
82 }
1246 - Colorful Board的更多相关文章
- LightOJ - 1246 Colorful Board(DP+组合数)
http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...
- LightOJ - 1246 - Colorful Board(DP)
链接: https://vjudge.net/problem/LightOJ-1246 题意: You are given a rectangular board. You are asked to ...
- AC日记——丑数 codevs 1246
1246 丑数 USACO 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题解 查看运行结果 题目描述 Description 对于一给定的素 ...
- [LeetCode] Battleships in a Board 平板上的战船
Given an 2D board, count how many different battleships are in it. The battleships are represented w ...
- UP Board 串口使用心得
前言 原创文章,转载引用务必注明链接. 本文使用Markdown写成,为获得更好的阅读体验和正常的图片.链接,请访问我的博客: http://www.cnblogs.com/sjqlwy/p/up_s ...
- UP Board 网络设置一本通
前言 原创文章,转载引用务必注明链接,水平有限,欢迎指正. 本文环境:ubilinux 3.0 on UP Board 本文使用Markdown写成,为获得更好的阅读体验和正常的图片.链接,请访问我的 ...
- UP Board USB无线网卡一贴通
前言 原创文章,转载引用务必注明链接,水平有限,欢迎指正. 本文环境:ubilinux 3.0 kernel 4.4.0 本文使用Markdown写成,为获得更好的阅读体验和正常的图片.链接,请访问我 ...
- 在UP Board 上搭建M——L服务器
前言 原创文章,转载引用务必注明链接,水平有限,欢迎指正. 本文环境:ubilinux 3.0 on UP Board 初识免流 所谓免流,就是免除手机访问网络产生的流量费用.其原理在乌云网上有过报道 ...
- UP Board 妄图启动ubilinux失败
前言 原创文章,转载引用务必注明链接. 经历了上次的上电开机失败,我们终于发现需要手动为UP板安装系统,因为没有显示器的Headless模式时,使用Linux比较方便,另外熟悉Debian系的,所以选 ...
随机推荐
- mvc中常见的属性验证
客户端验证逻辑会对用户向表单输入的数据给出一个即时反馈.而之所以需要服务器端验证,是因为来自网络的信息都是不能被信任的. 当在ASP.NET MVC设计模式上下文中谈论验证时,主要关注的是验证模型的值 ...
- 日常Java(测试 (二柱)修改版)2021/9/22
题目: 一家软件公司程序员二柱的小孩上了小学二年级,老师让家长每天出30道四则运算题目给小学生做. 二柱一下打印出好多份不同的题目,让孩子做了.老师看了作业之后,对二柱赞许有加.别的老师闻讯, 问二柱 ...
- 「译」 .NET 6 中 gRPC 的新功能
gRPC是一个现代的.跨平台的.高性能的 RPC 框架.gRPC for .NET 构建在 ASP.NET Core 之上,是我们推荐的在 .NET 中构建 RPC 服务的方法. .NET 6 进一步 ...
- 【leetcode】1217. Minimum Cost to Move Chips to The Same Position
We have n chips, where the position of the ith chip is position[i]. We need to move all the chips to ...
- WebService学习总览
[1]WebService简介 https://blog.csdn.net/xtayfjpk/article/details/12256663 [2]CXF中Web服务请求处理流程 https://b ...
- Windows zip版本安装MySQL
Windows --MySQL zip版本安装记录: step1. 官网download zip包:http://cdn.mysql.com//Downloads/MySQL-5.7/mysql-5. ...
- Oracle 表结构管理
表其实是数据的'容器'.oracle有几种类型的表: 普通表(ordinary table)又叫堆组织表. 聚簇表(clustered table) 分区表(partition table) 外部表( ...
- springboot优雅实现异常处理
前言 在平时的 API 开发过程中,总会遇到一些错误异常没有捕捉到的情况.那有的小伙伴可能会想,这还不简单么,我在 API 最外层加一个 try...catch 不就完事了. 哈哈哈,没错.这种方法简 ...
- Ribbon详解
转自Ribbon详解 简介 Spring Cloud Ribbon是一个基于HTTP和TCP的客户端负载均衡工具,它基于Netflix Ribbon实现.通过Spring Cloud的封装,可以让 ...
- Dubbo提供者的异步执行
从前面"对提供者的异步调用"例子可以看出,消费者对提供者实现了异步调用,消费者线程的执行过程不再发生阻塞,但提供者对IO耗时操作仍采用的是同步调用,即IO操作仍会阻塞Dubbo的提 ...