目录

Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks[C]. international conference on artificial intelligence and statistics, 2010: 249-256.

@article{glorot2010understanding,

title={Understanding the difficulty of training deep feedforward neural networks},

author={Glorot, Xavier and Bengio, Yoshua},

pages={249--256},

year={2010}}

本文提出了Xavier参数初始化方法.

主要内容

在第\(i=1, \ldots, d\)层:

\[\mathbf{s}^i=\mathbf{z}^i W^i+\mathbf{b}^i \\
\mathbf{z}^{i+1}= f(\mathbf{s}^i),
\]

其中\(\mathbf{z}^i\)是第\(i\)层的输入, \(\mathbf{s}^i\)是激活前的值, \(f(\cdot)\)是激活函数(假设其在0点对称, 且\(f'(0)=1\) 如tanh).

\[\mathrm{Var}(z^i) = n_l\mathrm{Var}(w^iz^i),
\]

在\(0\)附近近似成立(既然\(f'(0)=1\)), 其中\(z^i, w^i,\)分别是\(\mathbf{z}^i, W^i\)的某个元素, 且假设这些\(\{w^i\}\)之间是独立同分布的, \(w^i, z^i\)是相互独立的, 进一步假设\(\mathbb{E}(w^i)=0,\mathbb{E}(x)=0\)(\(x\)是输入的样本), 则

\[\mathrm{Var}(z^i) = n_l\mathrm{Var}(w^i)\mathrm{Var}(z^i),
\]

在\(0\)点附近近似成立.

\[\mathrm{Var}(z^i) = \mathrm{Var}(x) \prod_{i'=0}^{i-1} n_{i'} \mathrm{Var}(w_{i'})
\]

其中\(n_i\)表示第\(i\)层输入的节点个数.

根据梯度反向传播可知:

\[\tag{2}
\frac{\partial Cost}{\partial s_k^i} = f'(s_k^i) W_{k, \cdot}^{i+1} \frac{\partial Cost}{\partial \mathbf{s}^{i+1}}
\]
\[\tag{3}
\frac{\partial Cost}{\partial w_{l,k}^i} = z_l^i \frac{\partial Cost}{\partial s_k^i}.
\]

于是

\[\tag{6}
\mathrm{Var}[\frac{\partial Cost}{\partial s_k^i}] = \mathrm{Var}[\frac{\partial Cost}{\partial s^d}] \prod_{i'=i}^d n_{i'+1} \mathrm{Var} [w^{i'}],
\]
\[\mathrm{Var}[\frac{\partial Cost}{\partial w^i}] = \prod_{i'=0}^{i-1} n_{i'} \mathrm{Var}[w^{i'}] \prod_{i'=i}^d n_{i'+1} \mathrm{Var} [w^{i'}] \times \mathrm{Var}(x) \mathrm{Var}[\frac{\partial Cost}{\partial s^d}],
\]

当我们要求前向进程中关于\(z^i\)的方差一致, 则

\[\tag{10}
\forall i, \quad n_i \mathrm{Var} [w^i]=1.
\]

当我们要求反向进程中梯度的方差\(\frac{\partial Cost}{\partial s^i}\)一致, 则

\[\tag{11}
\forall i \quad n_{i+1} \mathrm{Var} [w^i]=1.
\]

本文选了一个折中的方案

\[\mathrm{Var} [w^i] = \frac{2}{n_{i+1}+n_{i}},
\]

并构造了一个均匀分布, \(w^i\)从其中采样

\[w^i \sim U[-\frac{\sqrt{6}}{\sqrt{n_{i+1}+n_{i}}},\frac{\sqrt{6}}{\sqrt{n_{i+1}+n_{i}}}].
\]

文章还有许多关于不同的激活函数的分析, 如sigmoid, tanh, softsign... 这些不是重点, 就不记录了.

[Xavier] Understanding the difficulty of training deep feedforward neural networks的更多相关文章

  1. Xavier——Understanding the difficulty of training deep feedforward neural networks

    1. 摘要 本文尝试解释为什么在深度的神经网络中随机初始化会让梯度下降表现很差,并且在此基础上来帮助设计更好的算法. 作者发现 sigmoid 函数不适合深度网络,在这种情况下,随机初始化参数会让较深 ...

  2. Understanding the difficulty of training deep feedforward neural networks

    本文作者为:Xavier Glorot与Yoshua Bengio. 本文干了点什么呢? 第一步:探索了不同的激活函数对网络的影响(包括:sigmoid函数,双曲正切函数和softsign y = x ...

  3. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  4. Understanding the Effective Receptive Field in Deep Convolutional Neural Networks

    Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解深度卷积神经网络中的有效感受野 ...

  5. AlexNet论文翻译-ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky ...

  6. Image Scaling using Deep Convolutional Neural Networks

    Image Scaling using Deep Convolutional Neural Networks This past summer I interned at Flipboard in P ...

  7. (转) Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance

    Ensemble Methods for Deep Learning Neural Networks to Reduce Variance and Improve Performance 2018-1 ...

  8. 中文版 ImageNet Classification with Deep Convolutional Neural Networks

    ImageNet Classification with Deep Convolutional Neural Networks 摘要 我们训练了一个大型深度卷积神经网络来将ImageNet LSVRC ...

  9. 深度学习的集成方法——Ensemble Methods for Deep Learning Neural Networks

    本文主要参考Ensemble Methods for Deep Learning Neural Networks一文. 1. 前言 神经网络具有很高的方差,不易复现出结果,而且模型的结果对初始化参数异 ...

随机推荐

  1. A Child's History of England.27

    Then, the Red King went over to Normandy, where the people suffered greatly under the loose rule of ...

  2. 断言(assert)简介

    java中的断言assert的使用 一.assertion的意义和用法 J2SE 1.4在语言上提供了一个新特性,就是assertion功能,他是该版本再Java语言方面最大的革新. 从理论上来说,通 ...

  3. hadoop/spark面试题

    总结于网络 转自:https://www.cnblogs.com/jchubby/p/5449379.html 1.简答说一下hadoop的map-reduce编程模型 首先map task会从本地文 ...

  4. 学习Vue源码前的几项必要储备(二)

    7项重要储备 Flow 基本语法 发布/订阅模式 ES6+ 语法 原型链.闭包 函数柯里化 event loop 接上讲 聊到了ES6的几个重要语法,加下来到第四点继续开始. 4.原型链.闭包 原型链 ...

  5. [php安全]原生类的利用

    php原生类的利用 查看原生类中具有魔法函数的类 $classes = get_declared_classes(); foreach ($classes as $class) { $methods ...

  6. C++ 成绩排名

    1004 成绩排名 (20分)   读入 n(>)名学生的姓名.学号.成绩,分别输出成绩最高和成绩最低学生的姓名和学号. 输入格式: 每个测试输入包含 1 个测试用例,格式为 第 1 行:正整数 ...

  7. 运维笔记之yum,rpm,挂载,磁盘管理和raid详解

    yum 与 rpm centos6,7 主要有rpm和yum这两种包管理软件,两种包的管理各有用处,其中最主要区别是:  yum使用简单但需要联网,yum会去网上的yum包源去获取所需要的软件包.而r ...

  8. 如何用shell脚本分析网站日志统计PV、404、500等数据

    以下shell脚本能统计出网站的总访问量,以及404,500出现的次数.统计出来后,可以结合监控宝来进行记录,进而可以看出网站访问量是否异常,是否存在攻击.还可以根据查看500出现的次数,进而判断网站 ...

  9. spring基于注解的声明式事务控制

    package com.hope.service.impl;import com.hope.dao.IAccountDao;import com.hope.domain.Account;import ...

  10. 【C/C++】日期问题/算法笔记/入门模拟

    最近把算法竞赛入门经典的前半部分看完了,开始看算法笔记入门算法. 看了前半部分的例题,很多是算法竞赛入门经典中出现过的,但是感觉这本书写的更适合初学者,而且真的很像考试笔记,通俗易懂. //日期问题 ...