Niu Y., Tang K., Zhang H., Lu Z., Hua X. and Wen J. Counterfactual VQA: A Cause-Effect Look at Language Bias. CVPR, 2021.

利用因果分析消除VQA(Visual Question Answering (VQA))中的language bias.

主要内容

如上图所示,

\(Q\): question;

\(V\): image;

\(K\): multi-modal knowledge;

\(A\): answer.

影响最后决策\(A\)有三种:

  1. \(Q \rightarrow A\), 直接受question影响, 比如模型对于所有的问图中的香蕉是什么颜色的问题均回答"黄色", 显然是不考虑图片的影响(因为可能是绿色), 这种实际上就是language bias;
  2. \(V \rightarrow A\), 直接受图片影响;
  3. \(V, Q \rightarrow K \rightarrow A\), 这里有一个mediator K, 即部分影响兼顾了\(Q, V\).

理想的VQA模型应该舍弃1中的影响, 在因果分析里头, 这部分direct effect被称之为natural direct effect (pure direct effect实际上):

\[NDE = A_{q, v^*, k*} - A_{q*, v^*, k^*}.
\]

余下的是TIE (total indirect effect):

\[TIE = TE - NDE = A_{q, v, k} - A_{q, v^*, k^*}.
\]

作者的思路是在inference的时候找到一个\(a\), 最大化TIE.

需要说明的是:

\[\mathrm{Pr}[A|do(Q, V, K)]
=\mathrm{Pr}[A|Q, V]\\
\mathrm{Pr}[A|do(Q, V^*, K^*)]
=\mathrm{Pr}[A|Q, V^*, K^*]\\
\]

这条件成立的原因单纯是因为作者的假设中并没有confounder, 实际上个人认为应当加一个\(V \rightarrow A\)的 arrow, 虽然这个并不影响上面的结论.

然后作者计算TIE也并不是针对\(A\), 而是\(A\)的score, \(Z=Z(Q=q, V=v, K=k)\).

实现

不同以往, 这一次可以显示地设置\(v^*, k^*\)了:

\[Z_q = \mathcal{F}_Q(q), Z_v=\mathcal{F}_V (v), Z_k=\mathcal{F}_{VQ}(v, q), Z_{q, v, k} = h(Z_q, Z_v, Z_k).
\]

特别的, 在\(q^*, v^*, k^*\)的情况下, 作者采取了如下的策略:

\[Z_q =
\left \{
\begin{array}{ll}
z_q = \mathcal{F}_Q(q), & \mathrm{if}\: Q= q \\
z_{q^*} = c, & \mathrm{if}\: Q=\empty.
\end{array}
\right .
\]
\[Z_v =
\left \{
\begin{array}{ll}
z_v = \mathcal{F}_V(v), & \mathrm{if}\: V= v \\
z_{v^*} = c, & \mathrm{if}\: V=\empty.
\end{array}
\right .
\]
\[Z_q =
\left \{
\begin{array}{ll}
z_k = \mathcal{F}_{VQ}(v,q), & \mathrm{if}\: V=v, Q = q \\
z_{k^*} = c, & \mathrm{if}\: V = \empty \: \mathrm{or}\: Q = \empty.
\end{array}
\right .
\]

这里\(c\)为可学习的变量.

注: 作者在代码中给出, \(c\)为一scalar, 也就是说实际上是:

\[z_* = c \cdot \mathbb{1}_{z}.
\]

作者也在文中指出, 这是为了一个Uniform的假设.

注: 看起来, 似乎应该对不同的\(Z_*\)指定不同的\(c\), 但是实际上, 是不影响的. 这一点是因为在下面HM和SUM的处理方式中, 无论是\(c_1\cdot c_2\cdot c_3\)

还是\(c_1 + c_2 + c_3\)都等价于\(c\) (这里要感谢作者的答复).

有了上面的准备, 下面是\(h\)的构造, 因为我们需要把不同的特征融合起来, 作者给出了两种方案:

  1. Harmonic (HM):
\[h(Z_q, Z_v, Z_k) = \log \frac{Z_{HM}}{1 + Z_{HM}}, Z_{HM} = \sigma(Z_q) \cdot \sigma(Z_v) \cdot \sigma(Z_k).
\]
  1. SUM:
\[h(Z_q, Z_v, Z_k) = \log \sigma(Z_{SUM}), Z_{SUM} = Z_q + Z_v + Z_k.
\]

在训练的时候, 用的是如下的损失:

\[\mathcal{L}_{cls} = \mathcal{L}_{VQA}(v, q, a)+ \mathcal{L}_{QA}(q, a) + \mathcal{L}_{VA}(v, a).
\]

以及, 为了训练\(c\)(且仅用于训练c),

\[\mathcal{L}_{kl} = \frac{1}{|A|}\sum_{a\in \mathcal{A}}-p(a|q,v,k)\log p(a|q, v^*,k^*),
\]

其中\(p(a|q,v,k)=softmax(Z_{q,v, k})\).

虽然感觉可以直接通过最大化TIE来训练c比较合理, 但是正如作者在附录中给出的解释一下, 这种情况明显会导致\(c \rightarrow 0\)并导致\(Z_{q, v^*, k^*}\rightarrow -\infty\).

代码

原文代码

Counterfactual VQA: A Cause-Effect Look at Language Bias的更多相关文章

  1. 【论文笔记】用反事实推断方法缓解标题党内容对推荐系统的影响 Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue

    Click can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue Authors: 王文杰,冯福利 ...

  2. 关于《阿里巴巴Java开发规约》插件的安装与使用

    一.安装 二.idea插件的安装与使用 https://github.com/alibaba/p3c/tree/master/idea-plugin#run-plugin Idea Plugin Pr ...

  3. OpenGL book list

      From: https://www.codeproject.com/Articles/771225/Learning-Modern-OpenGL   A little guide about mo ...

  4. 机器学习中模型泛化能力和过拟合现象(overfitting)的矛盾、以及其主要缓解方法正则化技术原理初探

    1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去 ...

  5. The 11 advantages of Java -Why you choose this language

    Java is never just a language.There are lots of programming languages out there, and few of them mak ...

  6. The Django template language 阅读批注

    The Django template language About this document This document explains the language syntax of the D ...

  7. The Go Programming Language. Notes.

    Contents Tutorial Hello, World Command-Line Arguments Finding Duplicate Lines A Web Server Loose End ...

  8. A Language Modeling Approach to Predicting Reading Difficulty-paer

    Volume:Proceedings of the Human Language Technology Conference of the North American Chapter of the ...

  9. 函数式编程语言(Fuction Program Language)

    一.什么是函数式编程语言 函数式编程语言(functional progarm language)一类程序设计语言,是一种非冯·诺伊曼式的程序设计语言.函数式语言主要成分是原始函数.定义函数和函数型. ...

随机推荐

  1. web自动化,selenium环境配置

    1,首先我们需要在python编译器中添加selenium插件,我用的是pycharm 点击下方的Terminal,然后在命令行输入: pip install selenium 也可以在设置里面手动添 ...

  2. E: Unable to fetch some archives, maybe run apt-get update or try with --fix-missing

    解决办法:apt-get update或者apt-get cleanapt-get update 或者 apt-get update --fix-missing问题解析1 source本身的问题 根据 ...

  3. 【STM32】晶振,主时钟,外设频率介绍

    首先,我用的是STM32F407,下方所有图片都是出自这芯片的文档,如果型号和我不同,需要找到对应的芯片说明文档,也许会有出入 先看一张时钟图 这里会着重说明高速的部分,低速(不管内部还是外部)只给R ...

  4. git stash命令及提交指定文件

    一.git stash命令 常用git stash命令: (1)git stash save "save message" : 执行存储时,添加备注,方便查找,只有git stas ...

  5. Dubbo声明式缓存

    为了进一步提高消费者对用户的响应速度,减轻提供者的压力,Dubbo提供了基于结果的声明式缓存.该缓存是基于消费者端的,所以使用很简单,只需修改消费者配置文件,与提供者无关 一.创建消费者07-cons ...

  6. matplotlib 画图中图和次坐标轴

    一: fig.add_axes 画图中图 fig = plt.figure() x = np.arange(1, 9, 1) y = np.linspace(1, 10, 8) left, botto ...

  7. 走进Spring Boot源码学习之路和浅谈入门

    Spring Boot浅聊入门 **本人博客网站 **IT小神 www.itxiaoshen.com Spring Boot官网地址:https://spring.io/projects/spring ...

  8. 强化学习实战 | 表格型Q-Learning玩井子棋(三)优化,优化

    在 强化学习实战 | 表格型Q-Learning玩井字棋(二)开始训练!中,我们让agent"简陋地"训练了起来,经过了耗费时间的10万局游戏过后,却效果平平,尤其是初始状态的数值 ...

  9. Service Worker的应用

    Service Worker的应用 Service worker本质上充当Web应用程序.浏览器与网络(可用时)之间的代理服务器,这个API旨在创建有效的离线体验,它会拦截网络请求并根据网络是否可用来 ...

  10. InnoDB学习(四)之RedoLog和UndoLog

    BinLog是MySQL Server层的日志,所有的MySQL存储引擎都支持BinLog.BinLog可以支持主从复制和数据恢复,但是对事务的ACID特性支持比较差.InnoDB存储引擎引入Redo ...