Atcoder 题面传送门 & 洛谷题面传送门

简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了。

我们记 \(f(i)\) 为钦定 \(i\) 个元素出现次数不超过一次,剩余放任自流(cmd_blk 内味)的方案数,再记 \(g(i)\) 为恰好 \(i\) 个元素出现次数不超过一次的方案数,那么有 \(f(i)=\sum\limits_{j=i}^ng(j)\dbinom{j}{i}\),二项式反演一下可得 \(g(i)=\sum\limits_{j=i}^nf(j)\dbinom{j}{i}(-1)^{j-i}\),我们要求的答案即为 \(g(0)=\sum\limits_{i=0}^n(-1)^if(i)\)。

考虑怎样求 \(f(i)\),首先我们需钦定 \(i\) 个元素出现不超过一次,方案数为 \(\dbinom{n}{i}\),我们枚举这 \(i\) 个元素划分入多少个集合,设为 \(j\),根据组合意义,可能会有一些元素出现了一次,那我们就新建一个集合 \(S_0\) 表示出现 \(0\) 次的数的集合,并新建一个 \(0\) 号元素,强制令 \(0\in S_0\),这样等价于将 \(i+1\) 个元素放入 \(j+1\) 个非空集合,其中与 \(0\) 号元素被划分在一个集合的元素就是出现零次的元素,这样可得方案数为 \(\begin{Bmatrix}i+1\\j+1\end{Bmatrix}\)。

接下来考虑剩下 \(n-i\) 个元素,它们可以形成 \(2^{n-i}\) 个集合,由于剩下的元素放任自流,这 \(2^{n-i}\) 个集合每个又有选或者不选两种方案,方案数为 \(2^{2^{n-i}}\),另外剩余 \(n-i\) 个元素每个又可以放入原来 \(j\) 个非空集合中,每个元素是否放入每个集合都有 \(2\) 种选择,因此每个元素可选择的方案数为 \(2^j\),总贡献为 \(2^{j\times(n-i)}\)。

因此 \(f(i)=\sum\limits_{j=0}^i\dbinom{n}{i}\begin{Bmatrix}i+1\\j+1\end{Bmatrix}·2^{2^{n-i}}·2^{j\times(n-i)}\),简单算一下就好了,\(n^2\log n\) 的做法显然,不过似乎过不去?稍微有点脑子的人也能优化到 \(n^2\) 罢……

const int MAXN=3e3;
int n,mod,s[MAXN+5][MAXN+5],c[MAXN+5][MAXN+5];
void init(int n){
s[0][0]=c[0][0]=1;
for(int i=1;i<=n;i++){
c[i][0]=1;
for(int j=1;j<=i;j++){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
s[i][j]=(s[i-1][j-1]+1ll*s[i-1][j]*j)%mod;
}
}
}
int qpow(int x,int e,int mod){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%mod) if(e&1) ret=1ll*ret*x%mod;
return ret;
}
int main(){
scanf("%d%d",&n,&mod);init(n+1);int ans=0;
for(int i=0;i<=n;i++){
int sum=0,pww=qpow(2,qpow(2,n-i,mod-1),mod),bs=qpow(2,n-i,mod),pw=1;
for(int j=0;j<=i;j++,pw=1ll*pw*bs%mod){
sum=(sum+1ll*s[i+1][j+1]*c[n][i]%mod*pww%mod*pw%mod)%mod;
}
if(i&1) ans=(ans-sum+mod)%mod;
else ans=(ans+sum)%mod;
} printf("%d\n",ans);
return 0;
}

Atcoder Regular Contest 096 C - Everything on It(组合数学)的更多相关文章

  1. AtCoder Regular Contest 096

    AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...

  2. [AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)

    题目链接:https://arc096.contest.atcoder.jp/tasks/arc096_c Time limit : 4sec / Memory limit : 512MB Score ...

  3. Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)

    洛谷题面传送门 & Atcoder 题面传送门 由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略. 考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_ ...

  4. AtCoder Regular Contest 096 D - Static Sushi(线性dp)

    Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...

  5. Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)

    Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...

  6. AtCoder Regular Contest 061

    AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...

  7. AtCoder Regular Contest 094 (ARC094) CDE题解

    原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...

  8. AtCoder Regular Contest 092

    AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...

  9. AtCoder Regular Contest 093

    AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...

随机推荐

  1. MySQL:补充知识

    MySQL补充知识 在学习完 MySQL 基础与提高内容后: 基础知识笔记: MySQL:基础语法-1 MySQL:基础语法-2 MySQL:基础语法-3 MySQL:基础语法-4 提高知识笔记: M ...

  2. spring源码分析(二)- 容器基础

    1.基本用法 用过Spring的都知道,bean是Spring中最基础也是最核心的.首先看一个简单的例子. 一个类和一个配置文件 package bean; public class MyBean { ...

  3. Scrum Meeting 10

    第10次例会报告 日期:2021年05月30日 会议主要内容概述: 目前组员均无暇软工,进展较慢. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wiki,如下记录仅为保证公 ...

  4. Scrum Meeting 0427

    零.说明 日期:2021-4-27 任务:简要汇报两日内已完成任务,计划后两日完成任务 一.进度情况 组员 负责 两日内已完成的任务 后两日计划完成的任务 qsy PM&前端 完成部分登录,注 ...

  5. NOIP 模拟 $79\; \rm y$

    题解 \(by\;zj\varphi\) NOIP2013 的原题 最简单的思路就是一个 bfs,可以拿到 \(70pts\) 75pts #include<bits/stdc++.h> ...

  6. Veritas Backup Exec™ 21.3 Multilingual (Windows)

    Backup Exec 21.3, Release date: 2021-09-06 请访问原文链接:https://sysin.org/blog/veritas-backup-exec-21-3/, ...

  7. Node.js躬行记(13)——MySQL归档

    当前我们组管理着一套审核系统,除了数据源是服务端提供的,其余后台管理都是由我们组在维护. 这个系统就是将APP中的各类社交信息送到后台,然后有专门的审核人员来判断信息是否合规,当然在送到后台之前已经让 ...

  8. 访问所有HTTPS网站显示连接不安全 (火狐浏览器)

    当 Firefox 连接到一个安全的网站时(网址最开始为"https://"),它必须确认该网站出具的证书有效且使用足够高的加密强度.如果证书无法通过验证,或加密强度过低,Fire ...

  9. 《手把手教你》系列技巧篇(三十七)-java+ selenium自动化测试-日历时间控件-上篇(详解教程)

    1.简介 我们在实际工作中,有可能遇到有些web产品,网页上有一些时间选择,然后支持按照不同时间段范围去筛选数据.网页上日历控件一般,是一个文本输入框,鼠标点击,就会弹出日历界面,可以选择具体日期.这 ...

  10. upload-labs通关攻略(1-11关)

    upload-labs通关攻略 upload-labs是练习文件上传很好的一个靶场,建议把upload-labs关卡全部练习一遍 1.下载安装 下载地址 链接:https://pan.baidu.co ...