Atcoder Regular Contest 096 C - Everything on It(组合数学)
简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了。
我们记 \(f(i)\) 为钦定 \(i\) 个元素出现次数不超过一次,剩余放任自流(cmd_blk 内味)的方案数,再记 \(g(i)\) 为恰好 \(i\) 个元素出现次数不超过一次的方案数,那么有 \(f(i)=\sum\limits_{j=i}^ng(j)\dbinom{j}{i}\),二项式反演一下可得 \(g(i)=\sum\limits_{j=i}^nf(j)\dbinom{j}{i}(-1)^{j-i}\),我们要求的答案即为 \(g(0)=\sum\limits_{i=0}^n(-1)^if(i)\)。
考虑怎样求 \(f(i)\),首先我们需钦定 \(i\) 个元素出现不超过一次,方案数为 \(\dbinom{n}{i}\),我们枚举这 \(i\) 个元素划分入多少个集合,设为 \(j\),根据组合意义,可能会有一些元素出现了一次,那我们就新建一个集合 \(S_0\) 表示出现 \(0\) 次的数的集合,并新建一个 \(0\) 号元素,强制令 \(0\in S_0\),这样等价于将 \(i+1\) 个元素放入 \(j+1\) 个非空集合,其中与 \(0\) 号元素被划分在一个集合的元素就是出现零次的元素,这样可得方案数为 \(\begin{Bmatrix}i+1\\j+1\end{Bmatrix}\)。
接下来考虑剩下 \(n-i\) 个元素,它们可以形成 \(2^{n-i}\) 个集合,由于剩下的元素放任自流,这 \(2^{n-i}\) 个集合每个又有选或者不选两种方案,方案数为 \(2^{2^{n-i}}\),另外剩余 \(n-i\) 个元素每个又可以放入原来 \(j\) 个非空集合中,每个元素是否放入每个集合都有 \(2\) 种选择,因此每个元素可选择的方案数为 \(2^j\),总贡献为 \(2^{j\times(n-i)}\)。
因此 \(f(i)=\sum\limits_{j=0}^i\dbinom{n}{i}\begin{Bmatrix}i+1\\j+1\end{Bmatrix}·2^{2^{n-i}}·2^{j\times(n-i)}\),简单算一下就好了,\(n^2\log n\) 的做法显然,不过似乎过不去?稍微有点脑子的人也能优化到 \(n^2\) 罢……
const int MAXN=3e3;
int n,mod,s[MAXN+5][MAXN+5],c[MAXN+5][MAXN+5];
void init(int n){
s[0][0]=c[0][0]=1;
for(int i=1;i<=n;i++){
c[i][0]=1;
for(int j=1;j<=i;j++){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
s[i][j]=(s[i-1][j-1]+1ll*s[i-1][j]*j)%mod;
}
}
}
int qpow(int x,int e,int mod){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%mod) if(e&1) ret=1ll*ret*x%mod;
return ret;
}
int main(){
scanf("%d%d",&n,&mod);init(n+1);int ans=0;
for(int i=0;i<=n;i++){
int sum=0,pww=qpow(2,qpow(2,n-i,mod-1),mod),bs=qpow(2,n-i,mod),pw=1;
for(int j=0;j<=i;j++,pw=1ll*pw*bs%mod){
sum=(sum+1ll*s[i+1][j+1]*c[n][i]%mod*pww%mod*pw%mod)%mod;
}
if(i&1) ans=(ans-sum+mod)%mod;
else ans=(ans+sum)%mod;
} printf("%d\n",ans);
return 0;
}
Atcoder Regular Contest 096 C - Everything on It(组合数学)的更多相关文章
- AtCoder Regular Contest 096
AtCoder Regular Contest 096 C - Many Medians 题意: 有A,B两种匹萨和三种购买方案,买一个A,买一个B,买半个A和半个B,花费分别为a,b,c. 求买X个 ...
- [AtCoder Regular Contest 096 E] Everything on It 解题报告 (第二类斯特林数+容斥原理)
题目链接:https://arc096.contest.atcoder.jp/tasks/arc096_c Time limit : 4sec / Memory limit : 512MB Score ...
- Atcoder Regular Contest 096 D - Sweet Alchemy(贪心+多重背包)
洛谷题面传送门 & Atcoder 题面传送门 由于再过 1h 就是 NOI 笔试了所以题解写得会略有点简略. 考虑差分,记 \(b_i=c_i-c_{fa_i}\),那么根据题意有 \(b_ ...
- AtCoder Regular Contest 096 D - Static Sushi(线性dp)
Problem Statement "Teishi-zushi", a Japanese restaurant, is a plain restaurant with only o ...
- Atcoder Regular Contest 093 D - Dark Horse(组合数学+状压 dp)
Atcoder 题面传送门 & 洛谷题面传送门 常规题,简单写写罢((( 首先 \(1\) 的位置是什么不重要,我们不妨钦定 \(1\) 号选手最初就处在 \(1\) 号位置,最后答案乘个 \ ...
- AtCoder Regular Contest 061
AtCoder Regular Contest 061 C.Many Formulas 题意 给长度不超过\(10\)且由\(0\)到\(9\)数字组成的串S. 可以在两数字间放\(+\)号. 求所有 ...
- AtCoder Regular Contest 094 (ARC094) CDE题解
原文链接http://www.cnblogs.com/zhouzhendong/p/8735114.html $AtCoder\ Regular\ Contest\ 094(ARC094)\ CDE$ ...
- AtCoder Regular Contest 092
AtCoder Regular Contest 092 C - 2D Plane 2N Points 题意: 二维平面上给了\(2N\)个点,其中\(N\)个是\(A\)类点,\(N\)个是\(B\) ...
- AtCoder Regular Contest 093
AtCoder Regular Contest 093 C - Traveling Plan 题意: 给定n个点,求出删去i号点时,按顺序从起点到一号点走到n号点最后回到起点所走的路程是多少. \(n ...
随机推荐
- HCNP Routing&Switching之BGP路由宣告
前文我们了解了BGP报文结构.类型以及邻居状态相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15422924.html:今天我们来聊一聊BGP路由宣告 ...
- springcloud(二) 微服务架构编码构建
微服务架构编码构建 1 基础知识 1.1 版本 2 微服务cloud整体聚合父工程Project 2.1 new project 2.2 字符编码设置 utf-8 2.3 pom.xml 2.4 父工 ...
- 第三次Alpha Scrum Meeting
本次会议为Alpha阶段第三次Scrum Meeting会议 会议概要 会议时间:2021年4月26日 会议地点:线上会议 会议时长:20min 会议内容简介:本次会议主要由每个人展示自己目前完成的工 ...
- 并发编程从零开始(九)-ConcurrentSkipListMap&Set
并发编程从零开始(九)-ConcurrentSkipListMap&Set CAS知识点补充: 我们都知道在使用 CAS 也就是使用 compareAndSet(current,next)方法 ...
- Python触发异常
我们可以使用raise语句自己触发异常,raise语法格式如下: raise [Exception [, args [, traceback]]] 语句中 Exception 是异常的类型(例如,Na ...
- 字符串与模式匹配算法(六):Needleman–Wunsch算法
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...
- C++构造函数注意事项
1.匿名对象 首先应该明确匿名对象,匿名对象是之没有对象名,调用完构造函数后即析构的对象.下面通过代码捕捉类的构造函数和析构函数,以进行说明: #include <iostream> us ...
- linux ar
转载:Linux ar命令 | 菜鸟教程 (runoob.com) Linux ar命令用于建立或修改备存文件,或是从备存文件中抽取文件. ar可让您集合许多文件,成为单一的备存文件.在备存文件中,所 ...
- java性能优化常用工具jmap、jstack
jmap:java内存映像工具 jmap用于生成堆转储快照,比较常用的option包括-heap,-histo,-dump [root@localhost script]# jmap -h Usage ...
- 羽夏看Win系统内核——SourceInsight 配置 WRK
写在前面 此系列是本人一个字一个字码出来的,包括示例和实验截图.由于系统内核的复杂性,故可能有错误或者不全面的地方,如有错误,欢迎批评指正,本教程将会长期更新. 如有好的建议,欢迎反馈.码字不易, ...