tensorflow_keras_预训练模型_Applications接口的使用
在很多复杂的计算机视觉问题上,我们需要使用层次相对较深的卷积神经网络才能得到好结果,但是自己从头去构建卷积神经网络是一个耗时耗力的事情,而且还不一定能训练好。大家通常用到最多的技巧是,使用“预训练好的模型”初始化模型,再在自己的数据集上进行后续处理。
这里记录学习keras预训练模型的笔记。
Keras中文官方文档(https://keras.io/zh/)
Keras应用 Applications(https://keras.io/zh/applications/)
Keras 的应用模块(keras.applications)提供了带有预训练权值的深度学习模型,这些模型可以用来进行预测、特征提取和微调(fine-tuning)
可用的模型
在 ImageNet 上预训练过的用于图像分类的模型:
- Xception
- VGG16
- VGG19
- ResNet, ResNetV2, ResNeXt
- InceptionV3
- InceptionResNetV2
- MobileNet
- MobileNetV2
- DenseNet
- NASNet
具体请看Keras中文官网,讲的非常详细
tensorflow_keras_预训练模型_Applications接口的使用的更多相关文章
- 使用MxNet新接口Gluon提供的预训练模型进行微调
1. 导入各种包 from mxnet import gluon import mxnet as mx from mxnet.gluon import nn from mxnet import nda ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 使用BERT预训练模型+微调进行文本分类
本文记录使用BERT预训练模型,修改最顶层softmax层,微调几个epoch,进行文本分类任务. BERT源码 首先BERT源码来自谷歌官方tensorflow版:https://github.co ...
- Paddle预训练模型应用工具PaddleHub
Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...
- 管正雄:基于预训练模型、智能运维的QA生成算法落地
分享嘉宾:管正雄 阿里云 高级算法工程师 出品平台:DataFunTalk 导读:面对海量的用户问题,有限的支持人员该如何高效服务好用户?智能QA生成模型给业务带来的提效以及如何高效地构建算法服务,为 ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...
- pytorch预训练模型的下载地址以及解决下载速度慢的方法
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 R ...
- keras中VGG19预训练模型的使用
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: ...
随机推荐
- Docker挂载主机目录到容器
docker run -it -v /宿主机绝对目录:/容器内目录 镜像名
- 线程终止的四种方式,interrupt 方法使用的简单介绍。
一 正常结束. package com.aaa.threaddemo; /* 一 终止线程的四种方式? * 程序运行结束,线程终止. * */ public class ThreadTerminati ...
- iOS中利用CoreTelephony获取用户当前网络状态(判断2G,3G,4G) by徐文棋
前言: 在项目开发当中,往往需要利用网络.而用户的网络环境也需要我们开发者去注意,根据不同的网络状态作相应的优化,以提升用户体验. 但通常我们只会判断用户是在WIFI还是移动数据,而实际上,移动数据也 ...
- 一文详解Kafka API
摘要:Kafka的API有Producer API,Consumer API还有自定义Interceptor (自定义拦截器),以及处理的流使用的Streams API和构建连接器的Kafka Con ...
- 虫师Selenium2+Python_2、测试环境搭建
windows环境配置: 步骤: 安装python 官网下载http://www.seleniumhq.org/ https://www.python.org/downloads/windows/ 3 ...
- SEAL库 - 安装和介绍
本篇文章介绍:SEAL同态库的安装和简单使用 注:使用Clang++编译的Microsoft Seal比使用GNUG++编译的Microsoft Seal具有更好的运行时性能. 1. cmake:适应 ...
- 《STL源码剖析》学习半生记:第一章小结与反思
不学STL,无以立.--陈轶阳 从1.1节到1.8节大部分都是从各方面介绍STL, 包括历史之类的(大致上是这样,因为实在看不下去我就直接略到了1.9节(其实还有一点1.8.3的内容)). 第一章里比 ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「Gym 102956A」Belarusian State University
\(\mathcal{Description}\) Link. 给定两个不超过 \(2^n-1\) 次的多项式 \(A,B\),对于第 \(i\in[0,n)\) 个二进制位,定义任意一个二元 ...
- Solution -「SV 2020 Round I」SA
\(\mathcal{Description}\) 求出处 owo. 给定一个长度为 \(n\),仅包含小写字母的字符串 \(s\),问是否存在长度为 \(n\),仅包含小写字母的字符串 \( ...