tensorflow_keras_预训练模型_Applications接口的使用
在很多复杂的计算机视觉问题上,我们需要使用层次相对较深的卷积神经网络才能得到好结果,但是自己从头去构建卷积神经网络是一个耗时耗力的事情,而且还不一定能训练好。大家通常用到最多的技巧是,使用“预训练好的模型”初始化模型,再在自己的数据集上进行后续处理。
这里记录学习keras预训练模型的笔记。
Keras中文官方文档(https://keras.io/zh/)
Keras应用 Applications(https://keras.io/zh/applications/)
Keras 的应用模块(keras.applications)提供了带有预训练权值的深度学习模型,这些模型可以用来进行预测、特征提取和微调(fine-tuning)
可用的模型
在 ImageNet 上预训练过的用于图像分类的模型:
- Xception
- VGG16
- VGG19
- ResNet, ResNetV2, ResNeXt
- InceptionV3
- InceptionResNetV2
- MobileNet
- MobileNetV2
- DenseNet
- NASNet
具体请看Keras中文官网,讲的非常详细
tensorflow_keras_预训练模型_Applications接口的使用的更多相关文章
- 使用MxNet新接口Gluon提供的预训练模型进行微调
1. 导入各种包 from mxnet import gluon import mxnet as mx from mxnet.gluon import nn from mxnet import nda ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 使用BERT预训练模型+微调进行文本分类
本文记录使用BERT预训练模型,修改最顶层softmax层,微调几个epoch,进行文本分类任务. BERT源码 首先BERT源码来自谷歌官方tensorflow版:https://github.co ...
- Paddle预训练模型应用工具PaddleHub
Paddle预训练模型应用工具PaddleHub 本文主要介绍如何使用飞桨预训练模型管理工具PaddleHub,快速体验模型以及实现迁移学习.建议使用GPU环境运行相关程序,可以在启动环境时,如下图所 ...
- 管正雄:基于预训练模型、智能运维的QA生成算法落地
分享嘉宾:管正雄 阿里云 高级算法工程师 出品平台:DataFunTalk 导读:面对海量的用户问题,有限的支持人员该如何高效服务好用户?智能QA生成模型给业务带来的提效以及如何高效地构建算法服务,为 ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 【转载】最强NLP预训练模型!谷歌BERT横扫11项NLP任务记录
本文介绍了一种新的语言表征模型 BERT--来自 Transformer 的双向编码器表征.与最近的语言表征模型不同,BERT 旨在基于所有层的左.右语境来预训练深度双向表征.BERT 是首个在大批句 ...
- pytorch预训练模型的下载地址以及解决下载速度慢的方法
https://github.com/pytorch/vision/tree/master/torchvision/models 几乎所有的常用预训练模型都在这里面 总结下各种模型的下载地址: 1 R ...
- keras中VGG19预训练模型的使用
keras提供了VGG19在ImageNet上的预训练权重模型文件,其他可用的模型还有VGG16.Xception.ResNet50.InceptionV3 4个. VGG19在keras中的定义: ...
随机推荐
- Avoiding the Backup of Online Redo Logs
Although it may seem that you should back up online redo logs along with the datafiles and control f ...
- django之“static”全局设置
1. 首先要配置静态文件路径(这些文件不输入任何app):. # 设置静态文件读取路径(这些静态文件不属于任何app) STATICFILES_DIRS = [ os.path.join(BASE_D ...
- 社交网络分析的 R 基础:(三)向量、矩阵与列表
在第二章介绍了 R 语言中的基本数据类型,本章会将其组装起来,构成特殊的数据结构,即向量.矩阵与列表.这些数据结构在社交网络分析中极其重要,本质上对图的分析,就是对邻接矩阵的分析,而矩阵又是由若干个向 ...
- RealFormer: 残差式 Attention 层的Transformer 模型
原创作者 | 疯狂的Max 01 背景及动机 Transformer是目前NLP预训练模型的基础模型框架,对Transformer模型结构的改进是当前NLP领域主流的研究方向. Transformer ...
- Ajax使用post方式发送数据注意事项
Ajax使用post方式给服务器传递数据时,需要将传递的字符串转化为模拟from表单发送数据的XML格式 在open之后奢姿头协议信息,模拟from表单传递数据 xhr.setRequestHeade ...
- synchronized类锁,对象锁,方法锁
synchronized从语法的维度一共有3个用法: 静态方法加上关键字 实例方法(也就是普通方法)加上关键字 方法中使用同步代码块 前两种方式最为偷懒,第三种方式比前两种性能要好. synchron ...
- python继承关系中,类属性的修改
class Grandfather(object): mylist = [] def __init__(self): pass class Father(Grandfather): pass Gran ...
- onclick="func()"和 onclick = "return func()"区别
onclick="func()" 表示只会执行 func , 但是不会传回 func 中之回传值onclick = "return func()" 则是 执行 ...
- python多版本切换
环境:Macbook MacOS自带的python2.7,在命令行中输入python后会显示2.7版本 如何切换成新版本? 一.修改用户配置环境变量~/.bash_profile 确定新版本的安装位置 ...
- node Cheerio 获取script脚本里的数据
const cheerio = require('cheerio'); const $ = cheerio.load(html); // your html//如果有多少script脚本标签使用循环来 ...