考场

T1 貌似是 luogu 上原题

T2 计数,想起了这题这题,但没有 \(n^2\) 一档的分。。。准备打个表

T3 期望 DP,但暴力是 \(O(qn)\) 的,发现 \(combo\) 的形式像一次函数,应该要用 DS 维护。

7.30 开写,8.00 拍上 T1

T2 打表发现填的数是每个数最后一次出现位置的升序那就有 53pts,比较满意。然后一直在想怎么改上面那题的方程,弃的比较早

T3 一度推出的暴力 DP 的式子,写出来不对,调了调也没啥思路,只能拼部分分了。sub6 只要维护 \(p\) 的区间和就行了,sub4 应该是 DP 的弱化版,但求稳拍了一下 sub6

res

rk3 100+53+40

rk1 张泽阳 100+78+89

rk2 ycx 100+78+64

总结

想正解的时间太长,这两天都出现了会的部分分没时间写的情况。总想 A 题,但思路不够灵活,码力不够强,于是考得好不好完全取决与题适不适合我。。。其实没有必要 A 题,上次如果再拿一个 sub 也能 rk1,这次的前两名也都是靠部分分。

最近减少开写前想题的时间,但写完暴力再想也不太有用,再试试吧。

还有 DP 这个大坑。其实 DP 题做的也不少了,但还是做不出来/有想法调不出来,主要是抄题解太多了,很多东西没有自己思考,作死啊。发现每日一题咕的越来越多,题也越来越水了。。。等回去了重开一个吧,只记录紫题及以上。

另一方面,DP 弱已经成了心理上的束缚。T2 宁愿在以前题的基础上改也不愿意再想一个,T3 都写出来了也不愿意调。与其说能力不够,不如说自己已经认了,不相信自己能写出 DP,这和等死有什么区别,尽快调整心态。

Prime

线性筛出 \(\sqrt R\) 范围内质数,再埃氏筛 \([L,R]\) 中的,时间复杂度 \(O(\sqrt R+(R-L)\log\log R)\)

考场代码
const int N = 1e7+5;
int k;
LL l,r; int n,pri,p[N];
LL ans;
bool vis[N]; void sieve() {
For(i,2,n) {
if( !vis[i] ) p[++pri] = i;
for(int j = 1; j <= pri && i*p[j] <= n; ++j) {
vis[i*p[j]] = 1;
if( !(i % p[j]) ) break;
}
}
memset(vis,0,sizeof vis);
} signed main() {
// freopen("a.in","r",stdin);
// freopen("a.out","w",stdout);
read(l,r,k); n = min((int)sqrt(r),k);
sieve();
For(i,1,pri) for(LL j = max((LL)p[i],(l+p[i]-1)/p[i])*p[i]; j <= r; j += p[i])
vis[j-l] = 1;
for(LL i = l; i <= r; ++i) if( !vis[i-l] ) ans ^= i;
write(ans);
return iocl();
}

Sequence

考虑已经确定的数列如何 DP,设 \(f[i,j]\) 为前 \(i\) 个数以值 \(j\) 结尾的本质不同子序列,则 \(f[i,a_i]=1+\sum_{j=1}^kf[i-1,j],\forall j\neq a_i,f[i,j]=f[i-1,j]\)(将前面本质不同的子序列后加上 \(a_i\) 这个值,同时 \(a_i\) 单个值也算一个序列。答案为 \(\sum_{i=1}^kf[n,i]\)

发现将第一位滚掉后,不论 \(a_i\) 是什么,\(f[a_i]\) 的值是固定的,容易想到让 \(a_i\) 为当前 DP 值最小的值,即最后一次出现位置最靠前的值(DP 值一定不降)。那么后面 \(m\) 个元素填的顺序是固定的,每 \(k\) 个循环一次,矩阵快速幂加速递推即可。

时间复杂度 \(O(n+k^3\log m)\)

code
const int N = 1e6+5, mod = 1e9+7;
int n,k,a[N];
LL m; LL sum=1,ans,f[105];
PII lst[105]; void ckadd(LL &x,LL y) { x+=y; if(x>=mod)x-=mod; else if(x<0)x+=mod; } struct Mat {
LL a[102][102];
Mat(bool op=0) {
memset(a,0,sizeof a);
if(op) For(i,1,101) a[i][i] = 1;
}
LL* operator [] (int i) { return a[i]; }
} s,base,t;
Mat operator * (Mat x,Mat y) {
Mat res;
For(i,1,101) For(k,1,101) For(j,1,101) res[i][j] += x[i][k]*y[k][j] %mod;
For(i,1,101) For(j,1,101) res[i][j] %= mod;
return res;
}
Mat operator ^ (Mat x,LL y)
{ Mat res(1); for(;y;y>>=1,x=x*x)if(y&1)res=res*x; return res; } signed main() {
read(n,m,k);
For(i,1,n) read(a[i]), lst[a[i]].fi = i;
For(i,1,k) lst[i].se = i; sort(lst+1,lst+k+1);
For(i,1,n) {
LL tmp = f[a[i]];
f[a[i]] = sum, ckadd(sum,f[a[i]]-tmp);
}
For(i,1,k) s[1][i] = f[lst[i].se]; s[1][k+1] = 1;
For(j,2,k) base[j][j-1] = 1; For(i,1,k+1) base[i][k] = 1; base[k+1][k+1] = 1;
t = s * (base ^ m);
For(i,1,k) ans += t[1][i];
write(ans%mod);
return iocl();
}

Omeed

\(BasicScore\) 显然是 \(\sum_{i=l}^rp_i\)。考虑暴力 DP :设 \(f[i]\) 为前 \(i\) 个音符的 \(Combo\),则有 \(f[i]=p_i(f[i+1]+1)+(1-p_i)t\times f[i-1]\),这部分的答案为 \(B\sum_{i=l+1}^rp_i(f[i-1]+1)\)。(因为只有当前这位 \(s_i=1\) 时 \(Combo\) 才有贡献,因此不能直接用 \(p_if[i]\) 算)

推推式子发现这是个一次函数的形式,线段树维护系数和常数即可(具体看代码)。

code
const int N = 5e5+5, mod = 998244353;
int sub,n,q;
LL tt,a,b; LL Pow(LL x,LL y=mod-2)
{ LL res=1; for(;y;y>>=1,x=x*x%mod)if(y&1)res=res*x%mod; return res; }
LL frac(LL x,LL y) { return x * Pow(y) %mod; } #define ls (u<<1)
#define rs (u<<1|1)
#define mid ((l+r)>>1)
#define lson ls,l,mid
#define rson rs,mid+1,r
#define up(u) (t[u]=t[ls]+t[rs])
struct Node {
LL k,b,sumk,sumb,sump;
// f[r]=kf[l-1]+b 这个区间的答案(f之和)为sumkf[l-1]+sumb p的区间和sump
void init(LL x) { k = (x+tt-tt*x%mod+mod)%mod, b = sumk = sumb = sump = x; }
} t[N*4];
Node operator + (Node x,Node y) {
return Node{ x.k*y.k%mod, (y.k*x.b+y.b)%mod,
(x.sumk+x.k*y.sumk)%mod, (x.sumb+y.sumk*x.b+y.sumb)%mod,
(x.sump+y.sump)%mod };
}
void build(int u=1,int l=1,int r=n) {
if( l == r ) {
LL x,y; read(x,y);
return t[u].init(frac(x,y));
}
build(lson), build(rson);
up(u);
}
void modify(int p,LL x,int u=1,int l=1,int r=n) {
if( l == r ) return t[u].init(x);
if( p <= mid ) modify(p,x,lson);
else modify(p,x,rson);
up(u);
}
Node query(int ql,int qr,int u=1,int l=1,int r=n) {
if( ql <= l && r <= qr ) return t[u];
if( qr <= mid ) return query(ql,qr,lson);
if( mid < ql ) return query(ql,qr,rson);
return query(ql,qr,lson) + query(ql,qr,rson);
}
#undef ls
#undef rs
#undef mid
#undef lson
#undef rson
#undef up signed main() {
read(sub,n,q,a,b); tt = frac(a,b); read(a,b);
build();
while( q-- ) {
int op; read(op);
if( !op ) {
int u; LL x,y; read(u,x,y);
modify(u,frac(x,y));
} else {
int l,r; read(l,r);
Node ans = query(l,r);
write((a*ans.sump + b*ans.sumb) %mod);
}
}
return iocl();
}

20210824 Prime,Sequence,Omeed的更多相关文章

  1. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  2. poj2478 Farey Sequence (欧拉函数)

    Farey Sequence 题意:给定一个数n,求在[1,n]这个范围内两两互质的数的个数.(转化为给定一个数n,比n小且与n互质的数的个数) 知识点: 欧拉函数: 普通求法: int Euler( ...

  3. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  4. POJ 1365 Prime Land(数论)

    题目链接: 传送门 Prime Land Time Limit: 1000MS     Memory Limit: 10000K Description Everybody in the Prime ...

  5. ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法

    POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS     Memory Limit:65536KB     64bit IO Fo ...

  6. Prime Query (ZOJ 3911 线段树)

    Prime Query Time Limit: 1 Second Memory Limit: 196608 KB You are given a simple task. Given a sequen ...

  7. ZOJ 3911 Prime Query ZOJ Monthly, October 2015 - I

    Prime Query Time Limit: 1 Second      Memory Limit: 196608 KB You are given a simple task. Given a s ...

  8. HDU 4390 Number Sequence 容斥原理

    Number Sequence Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) ...

  9. HDU 1016 Prime Ring Problem

    在刚刚写完代码的时候才发现我以前交过这道题,可是没有过. 后来因为不理解代码,于是也就不了了之了. 可说呢,那时的我哪知道什么DFS深搜的东西啊,而且对递归的理解也很肤浅. 这道题应该算HDU 261 ...

随机推荐

  1. 【奇妙的JavaScript】# 1

    奇妙的JavaScript 本专题整理了一些JavaScript的怪异行为,大部分都是选择题,题目都是简单的表达式.可以测试你有多了解 JavaScript,拓宽你的认知边界! 该专题计划每周更新1- ...

  2. Apache Flink上传路径遍历(CVE-2020-17518)

    影响版本 Flink1.5.1-1.11.2 复现 POST /jars/upload HTTP/1.1 Host: localhost:8081 Accept-Encoding: gzip, def ...

  3. Python小白的数学建模课-16.最短路径算法

    最短路径问题是图论研究中的经典算法问题,用于计算图中一个顶点到另一个顶点的最短路径. 在图论中,最短路径长度与最短路径距离却是不同的概念和问题,经常会被混淆. 求最短路径长度的常用算法是 Dijkst ...

  4. 关于document.write()方法重绘页面问题

    学习的时候,document.write()被告知是用来将内容写进页面里面,同时也被告知document.write()方法会重绘页面,但是关于什么时候会重绘,什么时候不会重绘页面没有太多解释. 首先 ...

  5. Salesforce Integration 概览(五) Remote Call-In(远程操作 外部->salesforce)

    本篇参考:https://resources.docs.salesforce.com/sfdc/pdf/integration_patterns_and_practices.pdf 本篇博客介绍 Re ...

  6. MongoDB 批量插入和循环插入性能测试

    一万条数据批量插入和循环插入 循环插入 var startTime = (new Date()).getTime() var db = connect('log') for(var i = 0;i&l ...

  7. 关于shell脚本——echo、for语句、while语句、until语句

    目录 一.echo 1.1.echo命令用法 1.2.echo截取字符 二.for语句 2.1.实例 创建用户名文件 创建脚本文件 运行脚本 三.while语句 3.1.实例 创建脚本文件 运行脚本 ...

  8. 构建工具之Maven的使用(一)

    一.前言 对于开发一个Java项目,上线之前会通过编译,测试,打包,部署这几个构建过程,如果文件较少,我们可以使用java-->javac-->jar这些命令去完成上述的构建流程.但是当工 ...

  9. .NET 6 全新指标 System.Diagnostics.Metrics 介绍

    前言 工友们, .NET 6 Preview 7 已经在8月10号发布了, 除了众多的功能更新和性能改进之外, 在 preview 7 版本中, 也新增了全新的指标API, System.Diagno ...

  10. IDE快捷键的使用

    ctrl+ait+l,整理代码 ctrl+atl+v,生成等号左边的类型和变量 shift+方向键,选择内容 ctrl+方向键,自己领悟.常常与shift同时使用 ctrl+alt+方向键,光标前进或 ...