写在前面:本实验用到的图片均来自google图片,侵删!


实验介绍

用python手写一个简单bp神经网络,实现人脸的性别识别。由于本人的机器配置比较差,所以无法使用网上很红的人脸大数据数据集(如lfw数据集等等),所以我从google图片下载了一些中国明星的照片来作为本次实验的数据集。

  • 训练数据集:5位中国的男明星(每个明星10张),6位中国的女明星(每个明星10张)。

  • 测试数据集:6张女生,6张男生

实验环境

  • win10

  • python3.5+opencv+dlib+PIL

  • 说明:上面涉及到的库都可以用pip install #### 轻易下载,但要注意它们之间的关联性,被依赖的库要先安装好。直接google就会有更详细的安装教程哦,所以这里不详说。。

实验步骤

1 下载图片,构成数据集

我随机从google图片中下载了5位男明星的图片和6位女明星的图片。男明星的图片放在/photo/boys文件中,女明星的图片放在/photo/girls文件中。

然后,我又随机从google图片中下载了6张‘女生’的图片和6张‘男生’的图片,分别放在/girltest文件和/boytest文件中

男明星:



女明星:

2 框出人脸,并保存人脸区域

利用别人写好的人脸分类器来截取图片中的人脸,并把从训练集中截取到的人脸放到/faces中。图片排序为0.jpg,1.jpg…从女明星的图片开始读起,然后男明星的接上。具体函数对应get_face_from_photo()函数。

人脸分类器下载:人脸分类器

框住人脸:





保存下来的人脸区域:

3 将人脸图片灰度化,且改为28*28大小

具体看函数change_photo_size28()

灰度化后的部分图集:

4 训练

4.1 读取图片的灰度值矩阵

读取图片的灰度值矩阵,读取出来的矩阵为(28,28)的,变为(784,1)的,然后把所有图片的的灰度值矩阵叠加成一个大的矩阵。

具体介绍参照:参考1参考2

4.2 训练、
  • 梯度下降法

  • sigmoid函数

具体介绍参照:参考1

参考2

5 测试

测试图片的前期处理和训练图片的前期处理一样,先框出人脸,再灰度化和改变大小为28*28。

男生测试集:



女生测试集

规定预测出来的pre>0.5为男生,否则为女生。

完整代码

# -*- coding:utf-8 -*-
'''
内容:训练图片处理和人脸识别的训练部分
作者:surecheun
邮箱:surecheun@163.com
版本:1.0
'''
from PIL import Image
import sys
import dlib
import cv2
import os
import os.path
import numpy as np
import PIL.Image
from pylab import * def get_face_from_photo(i,path,spath):
'''
利用别人写好的人脸分类器来截取图片中的人脸,并保存到spath中
分类器下载:https://github.com/opencv/opencv/tree/master/data/haarcascades
参考:官方文档
'''
detector = dlib.get_frontal_face_detector() #获取人脸分类
# 读取path路径下的图片,获得所有的图片名字
filenames = os.listdir(path) for f1 in filenames:
f = os.path.join(path,f1)
iimag = PIL.Image.open(f)
# opencv 读取图片,并显示
img = cv2.imread(f, cv2.IMREAD_COLOR) b, g, r = cv2.split(img) # 分离三个颜色通道
img2 = cv2.merge([r, g, b]) # 生成新图片 counts = detector(img, 1) #人脸检测 for index, face in enumerate(counts): # 在图片中标注人脸,并显示
left = face.left()
top = face.top()
right = face.right()
bottom = face.bottom() #保存人脸区域
j =str(i)
j = j+'.jpg'
save_path = os.path.join(spath,j)
region = (left,top,right,bottom)
#裁切图片
cropImg = iimag.crop(region) #保存裁切后的图片
cropImg.save(save_path)
i +=1 cv2.rectangle(img, (left, top), (right, bottom), (0, 255, 0), 3)
cv2.namedWindow(f, cv2.WINDOW_AUTOSIZE)
cv2.imshow(f, img) # 等待按键,退出,销毁窗口
k = cv2.waitKey(0)
cv2.destroyAllWindows()
return i def change_photo_size28(path,spath):
'''
将人脸图片转化为28*28的灰度图片
''' filenames = os.listdir(path) for filename in filenames:
f = os.path.join(path,filename)
iimag = PIL.Image.open(f).convert('L').resize((28,28))
savepath = os.path.join(spath,filename)
#savepath = spath + '/' + filename
iimag.save(savepath) def read_photo_for_train(k,photo_path):
'''
读取训练图片
'''
for i in range(k):
j = i
j = str(j)
st = '.jpg'
j = j+st
j = os.path.join(photo_path,j)
im1 = array(Image.open(j).convert('L'))
#(28,28)-->(28*28,1)
im1 = im1.reshape((784,1))
#把所有的图片灰度值放到一个矩阵中
#一列代表一张图片的信息
if i == 0:
im = im1
else:
im = np.hstack((im,im1))
return im def layerout(w,b,x): '''
sigmoid函数实现
''' y = np.dot(w,x) + b
t = -1.0*y
# n = len(y)
# for i in range(n):
# y[i]=1.0/(1+exp(-y[i]))
y = 1.0/(1+exp(t))
return y def mytrain(x_train,y_train):
'''
训练样本:中国某些明星的google图片(106张,女60张,男46张),侵删。女生标签为0,男生标签为1.
训练方法:简单的梯度下降法
参考(本人博客另一篇):https://blog.csdn.net/yunyunyx/article/details/80539222
''' '''
设置一个隐藏层,784-->隐藏层神经元个数-->1
''' step=int(input('mytrain迭代步数:'))
a=double(input('学习因子:'))
inn = 784 #输入神经元个数
hid = int(input('隐藏层神经元个数:'))#隐藏层神经元个数
out = 1 #输出层神经元个数 w = np.random.randn(out,hid)
w = np.mat(w)
b = np.mat(np.random.randn(out,1))
w_h = np.random.randn(hid,inn)
w_h = np.mat(w_h)
b_h = np.mat(np.random.randn(hid,1)) for i in range(step):
#打乱训练样本
r=np.random.permutation(106)
x_train = x_train[:,r]
y_train = y_train[:,r]
#mini_batch
for j in range(100):
x = np.mat(x_train[:,j])
x = x.reshape((784,1))
y = np.mat(y_train[:,j])
y = y.reshape((1,1))
hid_put = layerout(w_h,b_h,x)
out_put = layerout(w,b,hid_put) #更新公式的实现
o_update = np.multiply(np.multiply((y-out_put),out_put),(1-out_put))
h_update = np.multiply(np.multiply(np.dot((w.T),np.mat(o_update)),hid_put),(1-hid_put)) outw_update = a*np.dot(o_update,(hid_put.T))
outb_update = a*o_update
hidw_update = a*np.dot(h_update,(x.T))
hidb_update = a*h_update w = w + outw_update
b = b+ outb_update
w_h = w_h +hidw_update
b_h =b_h +hidb_update return w,b,w_h,b_h def mytest(x_test,w,b,w_h,b_h):
'''
预测结果pre大于0.5,为男;预测结果小于或等于0.5为女
'''
hid = layerout(w_h,b_h,x_test);
pre = layerout(w,b,hid);
print(pre)
if pre > 0.5:
print("hello,boy!")
else:
print("hello,girl!") #训练 #框出人脸,并保存到faces中,i为保存的名字
i = 0
#女孩
path = 'C:\\Users\\yxg\\Desktop\\photo\\girls'
spath = 'C:\\Users\\yxg\\Desktop\\faces'
i = get_face_from_photo(i,path,spath)
#男孩
path = 'C:\\Users\\yxg\\Desktop\\photo\\boys'
i = get_face_from_photo(i,path,spath) #将人脸图片转化为28*28的灰度图片
path = 'C:\\Users\\yxg\\Desktop\\faces'
spath = 'C:\\Users\\yxg\\Desktop\\faces'
change_photo_size28(path,spath) #获取图片信息
im = read_photo_for_train(106,spath) #归一化
immin = im.min()
immax = im.max()
im = (im-immin)/(immax-immin) x_train = im #制作标签,前60张是女生,为0
y1 = np.zeros((1,60))
y2 = np.ones((1,46))
y_train = np.hstack((y1,y2)) #开始训练
print("----------------------开始训练-----------------------------------------")
w,b,w_h,b_h = mytrain(x_train,y_train)
print("-----------------------训练结束------------------------------------------") #测试
print("--------------------测试女生-----------------------------------------")
#框出人脸,并保存到girltests中,i为保存的名字
i = 0
#女孩测试集
path = 'C:\\Users\\yxg\\Desktop\\girltest'
spath = 'C:\\Users\\yxg\\Desktop\\girltests'
i = get_face_from_photo(i,path,spath) #将人脸图片转化为28*28的灰度图片
path = 'C:\\Users\\yxg\\Desktop\\girltests'
spath = 'C:\\Users\\yxg\\Desktop\\girltests'
change_photo_size28(path,spath) #获取图片信息
im = read_photo_for_train(6,spath) #归一化
immin = im.min()
immax = im.max()
im = (im-immin)/(immax-immin) x_test = im
#print(x_test.shape)
for i in range(6):
xx = x_test[:,i]
xx = xx.reshape((784,1))
mytest(xx,w,b,w_h,b_h)
print("---------------------测试男生-----------------------------")
#框出人脸,并保存到boytests中,i为保存的名字
i = 0
#男孩测试集
path = 'C:\\Users\\yxg\\Desktop\\boytest'
spath = 'C:\\Users\\yxg\\Desktop\\boytests'
i = get_face_from_photo(i,path,spath) #将人脸图片转化为28*28的灰度图片
path = 'C:\\Users\\yxg\\Desktop\\boytests'
spath = 'C:\\Users\\yxg\\Desktop\\boytests'
change_photo_size28(path,spath) #获取图片信息
im = read_photo_for_train(6,spath) #归一化
immin = im.min()
immax = im.max()
im = (im-immin)/(immax-immin) x_test = im
for i in range(6):
xx = x_test[:,i]
xx = xx.reshape((784,1))
mytest(xx,w,b,w_h,b_h)

测试结果

----------------------开始训练--------------------------------------
mytrain迭代步数:300
学习因子:0.26
隐藏层神经元个数:28
-----------------------训练结束--------------------------------------
--------------------测试女生-----------------------------------------
[[0.00435441]]
hello,girl!
[[0.00160697]]
hello,girl!
[[0.47261838]]
hello,girl!
[[0.00344136]]
hello,girl!
[[0.00057052]]
hello,girl!
[[0.00030406]]
hello,girl!
---------------------测试男生-----------------------------
[[0.27352905]]
hello,girl!
[[0.63632333]]
hello,boy!
[[0.60296128]]
hello,boy!
[[0.68961767]]
hello,boy!
[[0.98755486]]
hello,boy!
[[0.99023972]]
hello,boy!

看结果,发现效果不错:6张女生图片都被识别对了,而男生只有一个被识别错误。。

python手写bp神经网络实现人脸性别识别1.0的更多相关文章

  1. 基于深度学习的人脸性别识别系统(含UI界面,Python代码)

    摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...

  2. Python语言编写BP神经网络

    Python语言编写BP神经网络 2016年10月31日 16:42:44 ldy944758217 阅读数 3135   人工神经网络是一种经典的机器学习模型,随着深度学习的发展神经网络模型日益完善 ...

  3. 手写BP(反向传播)算法

    BP算法为深度学习中参数更新的重要角色,一般基于loss对参数的偏导进行更新. 一些根据均方误差,每层默认激活函数sigmoid(不同激活函数,则更新公式不一样) 假设网络如图所示: 则更新公式为: ...

  4. C++开发人脸性别识别总结

    历时一个月,最终在昨天把<C++开发人脸性别识别总结>系列博客完毕了,第一篇博客发表在2015年12月29日,截止昨天2016年2月29日最后一篇完毕,去除中间一个月的寒假,正好一个月,首 ...

  5. C++开发人脸性别识别教程(3)——OpenCv配置和ImageWatch插件介绍

    OpenCv是C++图像处理的重要工具.这个人脸性别识别的项目就是借助OpenCv进行开发的. 尽管网上已经有了非常多关于OpenCv的配置教程,但出于教程完整性考虑.这里还是用专门的一篇博客来介绍O ...

  6. C++开发人脸性别识别教程(16)——视频人脸性别识别

    在之前的博文中我们已经可以顺利驱动摄像头来採集源图像.在这篇博文中将正式为其加入性别识别的代码,实现摄像头视频的人脸性别识别. 一.人脸检測 在得到摄像头採集的源图像之后,首先要做的就是对其进行人脸检 ...

  7. C++开发人脸性别识别教程(12)——加入性别识别功能

    经过之前几篇博客的解说,我们已经成功搭建了MFC应用框架,并实现了主要的图像显示和人脸检測程序,在这篇博文中我们要向当中加入性别识别代码. 关于性别识别,之前已经专门拿出两篇博客的篇幅来进行解说.这里 ...

  8. C++开发人脸性别识别教程(19)——界面美化

    在这篇博文中将完毕<C++开发人脸性别识别>的收尾工作.主要内容分为两部分:加入视频暂定功能.界面规范化. 一 视频暂停功能 严格来说这个视频暂定功能算是视频人脸性别识别的一个遗留问题,本 ...

  9. C++开发人脸性别识别教程(10)——加入图片的人脸检測程序

    现在我们的MFC框架已经初具规模,能够读取并显示目录下的图片.在这篇博文中我们将向当中加入人脸检測的程序. 一.人脸检測算法 这里我们使用OpenCv封装的Adaboost方法来进行人脸检測,參见:C ...

随机推荐

  1. 关于VS2013编辑器的问题

    如果输出报错 This function or variable may be unsafe. 解决方法 1.用VS2013打开出现错误的代码文件 2.在工程文件名处右击鼠标打开快捷菜单,找到“属性” ...

  2. 第二百四十四节,Bootstrap下拉菜单和滚动监听插件

    Bootstrap下拉菜单和滚动监听插件 学习要点: 1.下拉菜单 2.滚动监听 本节课我们主要学习一下 Bootstrap 中的下拉菜单插件,这个插件在以组件的形式我们 已经学习过,那么现在来看看怎 ...

  3. MyBatis 使用简单的 XML或注解用于配置和原始映射

    MyBatis 本是apache的一个开源项目iBatis, 2010年这个项目由apache software foundation 迁移到了google code,并且改名为MyBatis .My ...

  4. 在JAVA中利用public static final的组合方式对常量进行标识

    在JAVA中利用public static final的组合方式对常量进行标识(固定格式). 对于在构造方法中利用final进行赋值的时候,此时在构造之前系统设置的默认值相对于构造方法失效. 常量(这 ...

  5. matlab获取图片的size属性,长宽

    width=size(imread(‘文件名'),2): %获取图像宽length=size(imread(‘文件名'),1): %获取图像长 g=imread(['D:\文件及下载相关\桌面\代码 ...

  6. 程序阅读:简单C++学生信息管理系统

    课程首页在:http://blog.csdn.net/sxhelijian/article/details/11890759,内有完整教学方案及资源链接 [程序阅读]阅读并执行以下的程序,找出当中出现 ...

  7. iOS开发之 -- NSStringFromSelector的使用

    很多时候,我们要触发一个时间,需要设置点击时间,当然了,有很多,比如:按钮,手势,tableview和其他一些空间自带的点击方法, 还有一个就是NSStringFromSelector的使用,废话不多 ...

  8. laravel 添加 404 页面

    1)使用 laravel 抛出 404 头很简单 abort(404); 还可以添加描述 abort(404, '404 File Not Fund'); 2)如果想自定义 404 页面模版,直接添加 ...

  9. 自定义控件_水平滑动的View 自定义属性

    保持饥饿,保持愚蠢,我们对待事情本来应该就是这样的 接下来我要写一个水平滑动的自写义,实现效果 水平滑动我们有很多种实现方法,recyceryView,HorizontalScrollView都可以, ...

  10. px像素单位与IOS像素单位的换算

    本文转载至  http://blog.csdn.net/fanyuna/article/details/24032663 30px转成磅为单位=22磅=二号 磅=(像素/96)*72 =(30/96) ...