题目链接

https://www.51nod.com/Challenge/Problem.html#!#problemId=1238

题解

本来想做个杜教筛板子题结果用另一种方法过了......

所谓的“另一种方法”用到的一些技巧还是挺不错的,因此这里简单介绍一下。

首先还是基本的推式子:

\[\begin{aligned}\sum_{i = 1}^n \sum_{j = 1}^n {\rm lcm}(i, j) &= \sum_{i = 1}^n \sum_{j = 1}^n \frac{ij}{{\rm gcd}(i, j)} \\ &= \sum_{d = 1}^{n} \sum_{i = 1}^n \sum_{j = 1}^n[{\rm gcd}(i, j) = d]\frac{ij}{d} \\ &= \sum_{d = 1}^n d\sum_{i = 1}^{\left\lfloor\frac{n}{d}\right\rfloor}\sum_{j = 1}^{\left\lfloor\frac{n}{d}\right\rfloor}[{\rm gcd}(i, j) = 1]ij\end{aligned}
\]

设 \(f(x) = \sum_\limits{i = 1}^x \sum_\limits{j = 1}^x [{\rm gcd}(i, j) = 1]ij\),那么答案即为 \(\sum_\limits{d = 1}^n d\times f(\left\lfloor\frac{n}{d}\right\rfloor)\)。显然答案可以数论分块求,因此我们的任务就是求 \(f\) 函数。

首先考虑当 \(x\) 较小时,我们能否直接预处理出 \(f(x)\)。考虑差分:当 \(x > 1\) 时,\(f(x)\) 较 \(f(x - 1)\) 而言,多了的部分为:$$\left(\sum_\limits{i = 1}^x\sum_\limits{j = 1}^x [{\rm gcd}(i, j) = 1]ij\right) - \left(\sum_\limits{i = 1}^{x - 1}\sum_\limits{j = 1}^{x - 1} [{\rm gcd}(i, j) = 1]ij\right) = 2x \sum_{i = 1}^x [{\rm gcd}(i, x) = 1]i$$

而由于小于等于 \(x(x > 1)\) 且与 \(x\) 互质的数的和为 \(\frac{\varphi(x)x}{2}\)(证明提示:当 \(n \geq 2\) 时,若 \({\rm gcd}(d, n) = 1\) 必然有 \({\rm gcd}(n - d, n) = 1\),与 \(n\) 互质的 \(d\) 共有 \(\varphi(n)\) 个),因此我们就得到了 \(f(x)\) 的递推式:\(f(x) = f(x - 1) + 2x \times \frac{\varphi(x)x}{2}\),即 \(f(x) = f(x - 1) + \varphi(x)x^2\)。

不过这只能处理 \(x\) 较小的情况。当 \(x\) 较大时,我们仍然得另谋他路。在 \(f(x) = \sum_\limits{i = 1}^x \sum_\limits{j = 1}^x [{\rm gcd}(i, j) = 1]ij\) 当中,对 \(f(x)\) 有贡献的 \(i, j\) 满足 \(i\) 与 \(j\) 是互质的,我们尝试着使用补集转化,用总和减去不互质的 \(i, j\) 的贡献:

\[\begin{aligned} f(x) &= \sum_{i = 1}^x\sum_{j = 1}^x ij - \sum_{d = 2}^x \sum_{i = 1}^x \sum_{j = 1}^x [{\rm gcd}(i, j) = d]ij \\ &= \left(\frac{x(x+1)}{2}\right)^2 - \sum_{d = 2}^x d^2 \sum_{i = 1}^{\left\lfloor\frac{x}{d}\right\rfloor} \sum_{j = 1}^{\left\lfloor\frac{x}{d}\right\rfloor} [{\rm gcd}(i, j) = 1]ij \\ &=\left(\frac{x(x+1)}{2}\right)^2 - \sum_{d = 2}^x d^2 f(\left\lfloor\frac{x}{d}\right\rfloor) \end{aligned}
\]

这样,我们就能够递归地去求解当 \(x\) 较大时 \(f(x)\) 的值了。不难发现,该求解方法的时间复杂度和杜教筛是一样的,为 \(O(n^{\frac{2}{3}})\),且非常好写。

代码

#include<bits/stdc++.h>

using namespace std;

const int mod = 1000000007, inv2 = 500000004, inv6 = 166666668, up = 4641589, md = 1000003;

int main() {
function<int (int, int)> mul = [&] (int x, int y) {
return (long long) x * y % mod;
};
function<void (int&, int)> add = [&] (int& x, int y) {
x += y;
if (x >= mod) {
x -= mod;
}
};
function<void (int&, int)> sub = [&] (int& x, int y) {
x -= y;
if (x < 0) {
x += mod;
}
};
vector<bool> is_prime(up, true);
vector<int> phi(up), primes;
phi[1] = 1;
for (int i = 2; i < up; ++i) {
if (is_prime[i]) {
primes.push_back(i);
phi[i] = i - 1;
}
for (auto v : primes) {
int d = v * i;
if (d >= up) {
break;
}
is_prime[d] = false;
if (i % v == 0) {
phi[d] = mul(phi[i], v);
break;
} else {
phi[d] = mul(phi[i], phi[v]);
}
}
}
for (int i = 2; i < up; ++i) {
phi[i] = mul(mul(phi[i], i), i);
add(phi[i], phi[i - 1]);
}
function<int (long long)> sum_pow2 = [&] (long long n) {
n %= mod;
return mul(mul(mul(n, n + 1), (n * 2 + 1)), inv6);
};
vector<pair<long long, int>> value[md];
function<int (long long)> find = [&] (long long v) {
int p = v % md;
for (auto e : value[p]) {
if (e.first == v) {
return e.second;
}
}
return -1;
};
function<void (long long, int)> insert = [&] (long long v, int result) {
value[v % md].emplace_back(v, result);
};
function<int (long long)> f = [&] (long long n) {
int returned = find(n);
if (~returned) {
return returned;
} else {
if (n < up) {
return phi[n];
} else {
int result = 0, x = n % mod;
x = mul(mul(x, x + 1), inv2);
result = mul(x, x);
for (long long i = 2, last; i <= n; i = last + 1) {
last = n / (n / i);
sub(result, mul((sum_pow2(last) - sum_pow2(i - 1) + mod) % mod, f(n / i)));
}
insert(n, result);
return result;
}
}
};
long long n;
scanf("%lld", &n);
int answer = 0;
for (long long i = 1, last; i <= n; i = last + 1) {
last = n / (n / i);
add(answer, mul(mul(mul((i + last) % mod, (last - i + 1) % mod), inv2), f(n / i)));
}
printf("%d\n", answer);
return 0;
}

51nod1238. 最小公倍数之和 V3(数论)的更多相关文章

  1. 51nod1238 最小公倍数之和 V3 莫比乌斯函数 杜教筛

    题意:求\(\sum_{i = 1}^{n}\sum_{j = 1}^{n}lcm(i, j)\). 题解:虽然网上很多题解说用mu卡不过去,,,不过试了一下貌似时间还挺充足的,..也许有时间用phi ...

  2. [51Nod1238]最小公倍数之和 V3[杜教筛]

    题意 给定 \(n\) ,求 \(\sum_{i=1}^n \sum_{j=1}^n lcm(i,j)\). \(n\leq 10^{10}\) 分析 推式子 \[\begin{aligned} an ...

  3. [51nod1238]最小公倍数之和V3

    来自FallDream的博客,未经允许,请勿转载,谢谢. ----------------------------------------------------------------------- ...

  4. 51nod1238 最小公倍数之和 V3(莫比乌斯反演)

    题意 题目链接 Sol 不想打公式了,最后就是求一个 \(\sum_{i=1}^n ig(\frac{N}{i})\) \(g(i) = \sum_{i=1}^n \phi(i) i^2\) 拉个\( ...

  5. 51nod1238 最小公倍数之和 V3

    又被这神仙题给坑爆了. 神仙题解. 一开始我把lcm变成ij/gcd然后按照常规套路去推,推到最后发现不是miu * Id而是miu · Id......这还搞鬼啊. 正解居然跟这个差不多,先转成求其 ...

  6. [51nod1238] 最小公倍数之和 V3(杜教筛)

    题面 传送门 题解 懒了--这里写得挺好的-- //minamoto #include<bits/stdc++.h> #define R register #define ll long ...

  7. 51NOD 1238 最小公倍数之和 V3 [杜教筛]

    1238 最小公倍数之和 V3 三种做法!!! 见学习笔记,这里只贴代码 #include <iostream> #include <cstdio> #include < ...

  8. 51nod 1238 最小公倍数之和 V3

    51nod 1238 最小公倍数之和 V3 求 \[ \sum_{i=1}^N\sum_{j=1}^N lcm(i,j) \] \(N\leq 10^{10}\) 先按照套路推一波反演的式子: \[ ...

  9. 51 NOD 1238 最小公倍数之和 V3

    原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...

随机推荐

  1. [C++] const inside class VS const outside class

    const inside class VS const outside class 类内:类内的const和c语言一样,可以通过指针间接修改const变量的值,读内存,一开始必须初始化 类外:虽然可以 ...

  2. 使用shell命令操作数据库

    使用mysql的-e参数可以执行各种sql的(创建,删除,增,删,改.查)等各种操作 用法 mysql  -uxxx    –pxxx   -e  "mysql 命令" 当然还可以 ...

  3. 如何查看HBase的HFile

    记一个比较初级的笔记. ===流程=== 1. 创建一张表 2. 插入10条数据 3. 查看HFile ===操作=== 1.创建表 package api; import org.apache.ha ...

  4. Hive入门学习随笔(二)

    ====使用Load语句执行数据的导入 --将操作系统上的文件student01.txt数据导入到t2表中 load data local inpath '/root/data/student01.t ...

  5. STM32F4通用定时器

    1.基本原理 三种定时器区别 通用定时器功能特点描述 在这里只用输入捕获事件也能获取脉冲个数同时可以只使用它来获取脉冲宽度,比如当捕获到上升沿,马上进入中断,把计数器的值置零,然后等待捕获下降沿的到来 ...

  6. functions函数插件的定义和使用

    创建Smarty插件:在插件目录(plugins)里新建文件 类型.插件名.php文件,然后插件方法名字书写规范: smarty_类型_插件名([...]){}在模板(tpl文件)中调用插件时格式{插 ...

  7. 高并发Redis(Mac)环境配置(一)

    一.产生原因: SNS交互型网站的兴起,对于高并发,大负载数据的操作,海量数据的存储和访问 NoSql四种类型: 键值存储(Redis优点可以快速查询,缺点缺少存储的结构化)              ...

  8. C# JSON使用过程中开发的小工具

    我在用JSON的过程中,经常要去看一下JSON的结构,而JSON串大不部分时候都是未格式化的数据,一次我不得不用一些网页上的在线解析和格式化工具来进行格式化查看,但是这些网页有时候并不好用:因此就结合 ...

  9. Android 内存优化[转]

    一. Android的内存机制 Android的程序由Java语言编写,所以Android的内存管理与Java的内存管理相似.程序员通过new为对象分配内存,所有对象在java堆内分配空间:然而对象的 ...

  10. Android小技巧

    一.android:clipChildren属性 效果图 看到这个图时你可以先想想如果是你,你怎么实现这个效果.马上想到用RelativeLayout?NO,NO,NO,,, 实现代码 <?xm ...