题意:给定\(a[l...r]\),多次询问区间\([l,r]\)中的最大连续异或和\(a_i⊕a_{i+1}⊕...⊕a_{j},l≤i≤j≤r\)

一眼过去认为是不可做的,但题目给出\(n=1.2e4\),提供了分块暴力的余地

首先处理成前缀形式,对于询问\([l,r]\)既为\([l-1,r]\)中寻找两个数xor最大

维护\(f[i][j]\):第i个块到第j个数的任意异或最大值

这个只需\(O(30*n\sqrt{n})\)的代价即可预处理

对于每次询问,首个残缺的块暴力,其余块直接由\(f\)得到答案,复杂度\(O(30*m\sqrt{n})\)

Yet Another Similar Problem : https://www.cnblogs.com/caturra/p/8429665.html

#include<bits/stdc++.h>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iter(i,j) for(int i=0;i<(j).size();i++)
#define print(a) printf("%lld",(ll)a)
#define println(a) printf("%lld\n",(ll)a)
#define printbk(a) printf("%lld ",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 2e4+11;
const int oo = 0x3f3f3f3f;
typedef long long ll;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int T[MAXN],a[MAXN],b[MAXN];
struct TRIE{
int tot;
int son[MAXN*40][2],size[MAXN*40];
void init(){
tot=0;
son[0][0]=son[0][1]=size[0]=0;
memset(T,0,sizeof T);
}
int insert(int old,int val){
int rt,o;rt=o=++tot;
rrep(i,30,0){
son[o][0]=son[old][0],
son[o][1]=son[old][1];
size[o]=size[old]+1;
int wh=val>>i&1;
son[o][wh]=++tot;
old=son[old][wh];
o=son[o][wh];
}
size[o]=size[old]+1;
return rt;
}
int query(int l,int r,int val){
int ans=0;
rrep(i,30,0){
int wh=val>>i&1;
if(size[son[r][wh^1]]-size[son[l][wh^1]]){
ans|=(1<<i),r=son[r][wh^1],l=son[l][wh^1];
}else{
r=son[r][wh],
l=son[l][wh];
}
}
return ans;
}
}trie;
vector<int> vec[233];
int head[233],pos[MAXN];
int f[233][MAXN];
int main(){
int n,m;
while(cin>>n>>m){
trie.init();
rep(i,1,n) a[i]=read();
rep(i,1,n) b[i]=b[i-1]^a[i];
rep(i,1,n) T[i]=trie.insert(T[i-1],b[i]);
int sz=sqrt(n)+1;
rep(i,1,sz+3) vec[i].clear();
int now=0;
rep(i,1,n){
if(vec[now].size()==sz||now==0) head[++now]=i;
vec[now].push_back(a[i]);
pos[i]=now;
}
memset(f,0,sizeof f);
rep(i,1,now){
rep(j,head[i],n){
f[i][j]=max(f[i][j-1],trie.query(T[head[i]-1],T[j],b[j]));
}
}
int ans=0;
while(m--){
int l=read();
int r=read();
int x=((ll)l+ans)%n+1;
int y=((ll)r+ans)%n+1;
l=min(x,y); r=max(x,y);
ans=0;
--l;
if(pos[l]==pos[r]){
rep(i,l,r){
ans=max(ans,trie.query(T[l-1],T[r],b[i]));
}
}else{
ans=f[pos[l]+1][r];//best[pos[l+1]][r]
rep(i,l,head[pos[l]+1]-1){
ans=max(ans,trie.query(T[l-1],T[r],b[i]));
}
}
println(ans);
}
}
return 0;
}

BZOJ - 2741 分块维护最大连续异或和的更多相关文章

  1. bzoj 2741 分块+可持久化trie

    多个询问l,r,求所有子区间异或和中最大是多少 强制在线 做法: 分块+可持久化trie 1.对于每块的左端点i,预处理出i到任意一个j,()i,j)间所有子区间异或和中最大为多少,复杂度O(\(n\ ...

  2. BZOJ 2741: 【FOTILE模拟赛】L [分块 可持久化Trie]

    题意: 区间内最大连续异或和 5点调试到现在....人生无望 但总算A掉了 一开始想错可持久化trie的作用了...可持久化trie可以求一个数与一个数集(区间中的一个数)的最大异或和 做法比较明显, ...

  3. BZOJ 2741 L (可持久化01Trie+分块)

    题目大意:给你一个序列,共有$q$个询问,每次询问区间$[L,R]$内最大连续字段异或和,强制在线,$n<=12000,m<=5000$ 有个细节没处理好$WA$了好久..还有一次$ans ...

  4. BZOJ.2741.[FOTILE模拟赛]L(分块 可持久化Trie)

    题目链接 首先记\(sum\)为前缀异或和,那么区间\(s[l,r]=sum[l-1]^{\wedge}sum[r]\).即一个区间异或和可以转为求两个数的异或和. 那么对\([l,r]\)的询问即求 ...

  5. BZOJ 2741: 【FOTILE模拟赛】L(可持久化Trie+分块)

    传送门 解题思路 首先求出前缀异或和,那么问题就转化成了区间内选两个数使得其异或和最大.数据范围不是很大考虑分块,设\(f[x][i]\)表示第\(x\)块开头到\(i\)这个位置与\(a[i]\)异 ...

  6. 【BZOJ】2453: 维护队列【BZOJ】2120: 数颜色 二分+分块(暴力能A)

    先说正解:把所有相同的数相成一个链在每一个区间里的种数就是不同链的链头,那么记录每个数的上个相同数所在位置,那么只要找出l到r之间前驱值在l之前的数的个数就可以了 本人打的暴力,有一个小技巧,用cha ...

  7. BZOJ 2741 【FOTILE模拟赛】L(可持久化trie)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2741 思路:我们先将a变成a的异或前缀,这样问题就变成了,在l-1到r区间内,找出i,j令a[i]^ ...

  8. bzoj 2741: 【FOTILE模拟赛】L

    Description FOTILE得到了一个长为N的序列A,为了拯救地球,他希望知道某些区间内的最大的连续XOR和. 即对于一个询问,你需要求出max(Ai xor Ai+1 xor Ai+2 .. ...

  9. BZOJ 5495: [2019省队联测]异或粽子 (trie树)

    这题果然是原题[BZOJ 3689 异或之].看了BZOJ原题题解,发现自己sb了,直接每个位置维护一个值保存找到了以这个位置为右端点的第几大,初始全部都是1,把每个位置作为右端点能够异或出来的最大值 ...

随机推荐

  1. hdu 4946 Area of Mushroom (凸包,去重点,水平排序,留共线点)

    题意: 在二维平面上,给定n个人 每个人的坐标和移动速度v 若对于某个点,只有 x 能最先到达(即没有人能比x先到这个点或者同时到这个点) 则这个点称作被x占有,若有人能占有无穷大的面积 则输出1 , ...

  2. 安装DotNetCore.1.0.0-VS2015Tools.Preview2一直失败

    266C:22B0][2016-08-01T23:02:29]i052: Condition 'WixBundleInstalled OR NOT(NetFx45Release < 378675 ...

  3. asp.net web api 2框架揭秘文摘

    第一章 概述 URI 统一资源标识符 URL 统一资源定位符 http方法:get,post,put,delete,head等 状态码:100-199,请求已被接受: 200-299,成功状态: 30 ...

  4. (转) c/c++调用libcurl库发送http请求的两种基本用法

    libcurl主要提供了两种发送http请求的方式,分别是Easy interface方式和multi interface方式,前者是采用阻塞的方式发送单条数据,后者采用组合的方式可以一次性发送多条数 ...

  5. 敏捷软件开发:原则、模式与实践——第13章 写给C#程序员的UML概述

    第13章 写给C#程序员的UML概述 UML包含3类主要的图示.静态图(static diagram)描述了类.对象.数据结构以及它们之间的关系,藉此表现出了软件元素间那些不变的逻辑结构.动态图(dy ...

  6. 编写高质量代码改善C#程序的157个建议——建议133:用camelCasing命名私有字段和局部变量

    建议133:用camelCasing命名私有字段和局部变量 私有变量和局部变量只对本类型负责,它们在命名方式也采用和开放的属性及字段不同的方法.camelCasing很适合这类命名. camelCas ...

  7. hibernate3的配置

    原创 链接:https://pan.baidu.com/s/1S-x271CT3wBqQodfFI1dZg 密码:ghti hiberdate3的下载链接如上 hibernate3在MyEclipse ...

  8. gulp-usemin 插件使用

    关于什么是gulp,它和grunt有什么区别等问题,这里不做任何介绍.本文主要介绍如何使用gulp-usemin这款插件,同时也会简单介绍本文中用到的一些插件. 什么是gulp-usemin 用来将H ...

  9. java学习(一)数据类型

    一.java的安装及环境变量的配置 http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.htm ...

  10. 一些参考网站 - Reference Documentation - Website Address

    Reference Documentation - Website Address MSDN Visual Studio 2015官方文档 https://msdn.microsoft.com/zh- ...