HDU2256

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2256

题意:求(sqrt(2)+sqrt(3))^2n%1024是多少。

这个题算是hdu4565的一个常数版本了,所以我们先说这道题。对于这道题的做法我们可以计算((sqrt(2)+sqrt(3))^2)^n=(5+2*sqrt(6))^n,对于(5+2*sqrt(6))^n我们知道答案必定是以an+bn*sqrt(6),而对于下一项我们只需要求(an+bn*sqrt(6))*(5+2*sqrt(6))=5*an+12*bn+2*an*sqrt(6)+5*bn*sqrt(6),所以a(n+1)=5*an+12*bn; b(n+1)=2*an+5*bn。有了这个递推式我们就可以构造矩阵求an,bn。

这里还有一点对于(5+2*sqrt(6))^n=an+bn*sqrt(6); 同理(5-2*sqrt(6))^n=an-bn*sqrt(6);两式相加(5+2*sqrt(6))^n+(5-2*sqrt(6))^n=2*an,当n趋于无穷的时候lim(5-2*sqrt(6))^n=0,因为5-2*sqrt(6)<1。

所以我们可以得到答案(5+2*sqrt(6))^n约等于2*an,且实际值是比2*an要小的且小于2*an-1要大的,所以由题目的意思我们向下取整,ans=2*an-1;具体看代码,其他都是矩阵快速幂的模板。

//Author: xiaowuga
#include <bits/stdc++.h>
#define maxx INT_MAX
#define minn INT_MIN
#define inf 0x3f3f3f3f
#define n 2
#define MOD 1024
using namespace std;
typedef long long ll;
struct Matrix{
ll mat[][];
Matrix operator * (const Matrix & m) const{
Matrix tmp;
for(int i=;i<n;i++)
for(int j=;j<n;j++){
tmp.mat[i][j]=;
for(int k=;k<n;k++){
tmp.mat[i][j]+=mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j]%=MOD;
}
}
return tmp;
}
};
Matrix POW(Matrix &m,int k){
Matrix ans;
memset(ans.mat,,sizeof(ans.mat));
for(int i=;i<n;i++) ans.mat[i][i]=;
while(k){
if(k&) ans=ans*m;
k/=;
m=m*m;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
ll T,num;
cin>>T;
while(T--){
cin>>num;
Matrix m;
m.mat[][]=; m.mat[][]=; m.mat[][]=; m.mat[][]=;
Matrix ans=POW(m,num-);
ll sum=,f[]={,};
for(int i=;i<;i++)
sum+=ans.mat[][i]*f[i]%MOD;
sum%=MOD;
ll x=(*sum-)%MOD;
cout<<x<<endl;
}
return ;
}

HDU4565

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4565

题意:算是上面那道题的一个升级版本啦。现在是a和b不是固定的的常数了。和上面的做法一样。注意题目中给出a-sqrt(b)<1的条件,所以基本和上道题是一样的了,类比一下吧!很简单的。但是这里是向上取整,所以答案是2*an。具体看代码吧。由于上面那道题在常数情况下已经说得很明白了。这道题就不说了

//Author: xiaowuga
#include <bits/stdc++.h>
#define maxx INT_MAX
#define minn INT_MIN
#define inf 0x3f3f3f3f
#define size 2
int MOD;
using namespace std;
typedef long long ll;
struct Matrix{
ll mat[][];
void clear(){
memset(mat,,sizeof(mat));
}
Matrix operator * (const Matrix & m) const{
Matrix tmp;
for(int i=;i<size;i++)
for(int j=;j<size;j++){
tmp.mat[i][j]=;
for(int k=;k<size;k++){
tmp.mat[i][j]+=mat[i][k]*m.mat[k][j]%MOD;
tmp.mat[i][j]%=MOD;
}
}
return tmp;
}
};
Matrix POW(Matrix &m,int k){
Matrix ans;
memset(ans.mat,,sizeof(ans.mat));
for(int i=;i<size;i++) ans.mat[i][i]=;
while(k){
if(k&) ans=ans*m;
k/=;
m=m*m;
}
return ans;
}
int main() {
ios::sync_with_stdio(false);cin.tie();
ll a,b,n;
while(cin>>a>>b>>n>>MOD){
Matrix m;
m.clear();
m.mat[][]=m.mat[][]=a%MOD;
m.mat[][]=b%MOD;m.mat[][]=;
Matrix ans=POW(m,n-);
ll sum=(ans.mat[][]*a%MOD+ans.mat[][]%MOD)%MOD;
cout<<*sum%MOD<<endl;
}
return ;
}

HDU2256&&HDU4565:给一个式子的求第n项的矩阵快速幂的更多相关文章

  1. 515Nod 1126 求递推序列的第n项【矩阵快速幂】

    有一个序列是这样定义的:f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7. 给出A,B和N,求f(n)的值. Input 输 ...

  2. 51Nod 1126 求递推序列的第N项(矩阵快速幂)

    #include <iostream> #include <algorithm> #include <cmath> #define MOD 7 #define N ...

  3. hdu 1575 求一个矩阵的k次幂 再求迹 (矩阵快速幂模板题)

    Problem DescriptionA为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973. Input数据的第一行是一个T,表示有T组数据.每组数据的第一行有 ...

  4. HDU 3802 矩阵快速幂 化简递推式子 加一点点二次剩余知识

    求$G(a,b,n,p) = (a^{\frac {p-1}{2}}+1)(b^{\frac{p-1}{2}}+1)[(\sqrt{a} + \sqrt{b})^{2F_n} + (\sqrt{a} ...

  5. 【XSY2612】Comb Avoiding Trees 生成函数 多项式求逆 矩阵快速幂

    题目大意 本题的满二叉树定义为:不存在只有一个儿子的节点的二叉树. 定义一棵满二叉树\(A\)包含满二叉树\(B\)当且经当\(A\)可以通过下列三种操作变成\(B\): 把一个节点的两个儿子同时删掉 ...

  6. hdu 1757 (矩阵快速幂) 一个简单的问题 一个简单的开始

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1757 题意不难理解,当x小于10的时候,数列f(x)=x,当x大于等于10的时候f(x) = a0 * ...

  7. 求幂大法,矩阵快速幂,快速幂模板题--hdu4549

    hdu-4549 求幂大法.矩阵快速幂.快速幂 题目 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 ...

  8. hdu4686 简单的矩阵快速幂求前n项和

    HDU4686 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4686 题意:题目说的很清楚了,英语不好的猜也该猜懂了,就是求一个表达式的前n项和,矩阵 ...

  9. UOJ424 Count 生成函数、多项式求逆、矩阵快速幂

    传送门 两个序列相同当且仅当它们的笛卡尔树相同,于是变成笛卡尔树计数. 然后注意到每一个点的权值一定会比其左儿子的权值大,所以笛卡尔树上还不能够存在一条从根到某个节点的路径满足向左走的次数\(> ...

随机推荐

  1. Message: 'geckodriver' executable needs to be in PATH. 解决方法

    问题描述: 执行如下代码 # coding=utf-8 from selenium import webdriver driver = webdriver.Firefox() driver.maxim ...

  2. 解决The markup in the document following the root element must be well-formed.

    出现问题的代码: <security-constraint> <web-resource-collection> <web-resource-name>Regist ...

  3. 浅析StackTrace

    我们在学习函数调用时,都知道每个函数都拥有自己的栈空间.一个函数被调用时,就创建一个新的栈空间.那么通过函数的嵌套调用最后就形成了一个函数调用堆栈.在c#中,使用StackTrace记录这个堆栈.你可 ...

  4. C# 静态构造函数使用

    当我们想初始化一些静态变量的时候,就需要用到静态构造函数了.这个静态构造函数属于类,而不属于实例,就是说这个构造函数只会被执行一次,即:在创建第一个实例或引用任何静态成员之前,由.NET自动调用. 现 ...

  5. Android基础总结(八)Service

    服务两种启动方式(掌握) startService 开始服务,会使进程变成为服务进程 启动服务的activity和服务不再有一毛钱关系 bindService 绑定服务不会使进程变成服务进程 绑定服务 ...

  6. windbg的使用

      1. set 1.1. 设置Symbol file path file->symbol file path, 如: D:\***\TestProject\pdb   1.2 设置source ...

  7. 【BZOJ】2005: [Noi2010]能量采集(欧拉函数+分块)

    http://www.lydsy.com/JudgeOnline/problem.php?id=2005 首先和某题一样应该一样可以看出每个点所在的线上有gcd(x,y)-1个点挡着了自己... 那么 ...

  8. 关于Android Animation的setFillBefore、setFillAfter和setFillEnable

    1. 如果是独立的Animation,只有setFillAfter有效,设置为true动画结束后保持最后的状态 2. 如果是AnimationSet中的Animation,因为Animation的作用 ...

  9. ThinkPHP项目笔记之RBAC(权限)中篇

    现在,说说添加权限,权限管理列表 c.添加权限

  10. COCOS2D-X多层单点触摸分发处理方案?

    如今的问题是点击button的时候,会触发底层的触摸事件,怎么不触发底层的触摸事件啊?