POJ1733 Parity game


Description

Now and then you play the following game with your friend. Your friend writes down a sequence consisting of zeroes and ones. You choose a continuous subsequence (for example the subsequence from the third to the fifth digit inclusively) and ask him, whether this subsequence contains even or odd number of ones. Your friend answers your question and you can ask him about another subsequence and so on. Your task is to guess the entire sequence of numbers.

You suspect some of your friend’s answers may not be correct and you want to convict him of falsehood. Thus you have decided to write a program to help you in this matter. The program will receive a series of your questions together with the answers you have received from your friend. The aim of this program is to find the first answer which is provably wrong, i.e. that there exists a sequence satisfying answers to all the previous questions, but no such sequence satisfies this answer.

Input

The first line of input contains one number, which is the length of the sequence of zeroes and ones. This length is less or equal to 1000000000. In the second line, there is one positive integer which is the number of questions asked and answers to them. The number of questions and answers is less or equal to 5000. The remaining lines specify questions and answers. Each line contains one question and the answer to this question: two integers (the position of the first and last digit in the chosen subsequence) and one word which is either even or odd (the answer, i.e. the parity of the number of ones in the chosen subsequence, where even means an even number of ones and odd means an odd number).

Output

There is only one line in output containing one integer X. Number X says that there exists a sequence of zeroes and ones satisfying first X parity conditions, but there exists none satisfying X+1 conditions. If there exists a sequence of zeroes and ones satisfying all the given conditions, then number X should be the number of all the questions asked.

Sample Input

10

5

1 2 even

3 4 odd

5 6 even

1 6 even

7 10 odd

Sample Output

3


题意:

告诉你有一个长度为L的01串

然后告诉你n个询问和结果

询问一个区间中的1的个数是计数还是偶数

然后给出答案

问你前多少个答案是合法的


这题我有另一个做法的题解啊,在这里

然后这个做法好像是啥扩展域并查集

意思就是说我们把每个点的前缀奇和前缀偶分成两个点,然后每次我们可以发现一些点之间的等价关系(连边),只需要判断:

1." role="presentation" style="position: relative;">1.1.是不是当前命题不成立

2." role="presentation" style="position: relative;">2.2.是不是有一个点的奇数和偶数是等价的(连上边),然后并查集维护


#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN=10000;
#define OD(t) t
#define EV(t) t+MAXN
const int N=10010;
int fa[N<<1],pre[N<<1];
int l[N],r[N];bool typ[N];
int n,m,tot=0;
char c[10];
int find(int x){
if(x==fa[x])return x;
return fa[x]=find(fa[x]);
}
void merge(int x,int y){fa[find(x)]=find(y);}
int main(){
scanf("%d%d",&m,&n);
for(int i=1;i<=n;i++){
scanf("%d%d%s",&l[i],&r[i],c);
pre[++tot]=--l[i];
pre[++tot]=r[i];
if(c[0]=='e')typ[i]=0;
else typ[i]=1;
}
sort(pre+1,pre+tot+1);
tot=unique(pre+1,pre+tot+1)-pre-1;
for(int i=1;i<N*2;i++)fa[i]=i;
for(int i=1;i<=n;i++){
l[i]=lower_bound(pre+1,pre+tot+1,l[i])-pre;
r[i]=lower_bound(pre+1,pre+tot+1,r[i])-pre;
}
for(int i=1;i<=n;i++){
if(typ[i]){
if(find(OD(l[i]))==find(OD(r[i]))){printf("%d",i-1);return 0;}
if(find(EV(l[i]))==find(EV(r[i]))){printf("%d",i-1);return 0;}
merge(OD(l[i]),EV(r[i]));
merge(EV(l[i]),OD(r[i]));
}else{
if(find(OD(l[i]))==find(EV(r[i]))){printf("%d",i-1);return 0;}
if(find(EV(l[i]))==find(OD(r[i]))){printf("%d",i-1);return 0;}
merge(OD(l[i]),OD(r[i]));
merge(EV(l[i]),EV(r[i]));
}
}
printf("%d",n);
return 0;
}

POJ1733 Parity game 【扩展域并查集】*的更多相关文章

  1. poj1733 Parity Game(扩展域并查集)

    描述 Now and then you play the following game with your friend. Your friend writes down a sequence con ...

  2. POJ1733 Parity game —— 种类并查集

    题目链接:http://poj.org/problem?id=1733 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  3. [POJ1733]Parity game(并查集 + 离散化)

    传送门 题意:有一个长度已知的01串,给出[l,r]这个区间中的1是奇数个还是偶数个,给出一系列语句问前几个是正确的 思路:如果我们知道[1,2][3,4][5,6]区间的信息,我们可以求出[1,6] ...

  4. POJ1733 Party game [带权并查集or扩展域并查集]

    题目传送 Parity game Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10870   Accepted: 4182 ...

  5. NOI2001 食物链【扩展域并查集】*

    NOI2001 食物链 动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形.A 吃 B,B吃 C,C 吃 A. 现有 N 个动物,以 1 - N 编号.每个动物都是 A,B,C 中的 ...

  6. POJ2912 Rochambeau [扩展域并查集]

    题目传送门 Rochambeau Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 4463   Accepted: 1545 ...

  7. P1525 关押罪犯[扩展域并查集]

    题目来源:洛谷 题目描述 S城现有两座监狱,一共关押着N名罪犯,编号分别为1−N.他们之间的关系自然也极不和谐.很多罪犯之间甚至积怨已久,如果客观条件具备则随时可能爆发冲突.我们用“怨气值”(一个正整 ...

  8. AcWing:240. 食物链(扩展域并查集 or 带边权并查集)

    动物王国中有三类动物A,B,C,这三类动物的食物链构成了有趣的环形. A吃B, B吃C,C吃A. 现有N个动物,以1-N编号. 每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种. 有人用 ...

  9. AcWing:239. 奇偶游戏(前缀和 + 离散化 + 带权并查集 + 异或性质 or 扩展域并查集 + 离散化)

    小A和小B在玩一个游戏. 首先,小A写了一个由0和1组成的序列S,长度为N. 然后,小B向小A提出了M个问题. 在每个问题中,小B指定两个数 l 和 r,小A回答 S[l~r] 中有奇数个1还是偶数个 ...

随机推荐

  1. string与位运算

    1.String String  a="abc";  会在常量池中开辟一个空间,保存"abc" String  b=new String("abc&q ...

  2. maven 引入jar包

    问题描述:自己的项目需要引入jar包,已知jar包名字,怎么在maven中添加依赖,使其能自动导入? 第一次使用:本文作为记录! 首先,找到maven仓库的网址!如下: http://mvnrepos ...

  3. asp.net服务器上无法发送邮件的问题

    前几天为开发的网站做了个发送邮件的功能,但是部署到服务器上无法发送邮件,提示由于目标机器积极拒绝,无法连接.在网上找到了一个解决办法 如果安装了McAfee杀毒软件(按照“手工安装方法”安装),首先需 ...

  4. docker下rabbitMQ高可用集群部署

    第一步:docker 安装: mac 下安装命令: brew cask install docker 安装完之后查看版本 docker --version 第二步:开始集群搭建: 采用bijukunj ...

  5. BZOJ 1026 windy数 (数位DP)

    题意 区间[A,B]上,总共有多少个不含前导零且相邻两个数字之差至少为2的正整数? 思路 状态设计非常简单,只需要pos.limit和一个前驱数pre就可以了,每次枚举当前位时判断是否与上一位相差2即 ...

  6. 【Python】改变对象的字符串显示

    问题 改变对象实例的打印或显示输出,让它们更具可读性. 解决方案 要改变一个实例的字符串表示,可重新定义它的 __str__() 和 __repr__() 方法.例如: class Pair: def ...

  7. OpenStack Mitaka Neutron SR-IOV配置

    ### 一.在所有节点(控制节点.计算节点) 1.修改BIOS ``` BOIS里面开启SR-IOV功能 开启 VT-d (inter virtualization technology)和 SR-I ...

  8. 谷歌模拟手机和真机上显示的各个机型的 dpi--和高度

    **以下数据尚未经过严密测试.待日后工作中再试** var dpi = window.devicePixelRatio;//获取屏幕分辨率 alert("dpi为:"+dpi); ...

  9. 一张图带你了解OKhttp框架

  10. JQuery遍历CheckBox踩坑记

    $("#checkbox_id").attr("checked"); //获取一个CheckBox的状态(有没有被选中,返回true/false) $(&quo ...