BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD
Description
神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入
Input
第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M
Output
T行,每行一个整数表示第i组数据的结果
Sample Input
2
10 10
100 100
Sample Output
30
2791
HINT
T = 10000
N, M <= 10000000
//yangkai
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int N=1e7+10;
int T,n,m,tot=0;
bool mark[N];
int pri[N],mu[N];
LL F[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<N;j++){
mark[i*pri[j]]=1;
if(!(i%pri[j])){//已经存在过pri[j],出现平方因子
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
//预处理F数组
for(int i=1;i<N;i++)
for(int j=1;j<=tot&&i*pri[j]<N;j++)
F[i*pri[j]]+=mu[i];
for(int i=1;i<N;i++)F[i]+=F[i-1];
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int up=min(n,m);
LL ans=0;
//下底函数分块计算
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(F[j]-F[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return 0;
}
BZOJ2820 YY的GCD 【莫比乌斯反演】的更多相关文章
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...
- 【BZOJ2820】YY的GCD [莫比乌斯反演]
YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- CountDownLatch await可能存在的问题
执行countdown的某个子线程可能会因为某些原因无法执行countdown,这样就会导致await线程一直阻塞下去. 在线程池中多次调用await方法,因为await方法会阻塞一段时间,有可能导致 ...
- mac下cordova的ios-deploy安装问题
mac下进行cordova项目编译部署到ios设备,这个时候需要安装ios-deploy,会失败: npm WARN lifecycle ios-deploy@1.8.6~preinstall: ca ...
- 先安装ubuntu,后安装windows,修复启动grub
使用easybcd修复未果,直接使用启动盘修复,主要根据这个帖子来的,验证可用 http://blog.csdn.net/kevin6216/article/details/7764292 由于重装w ...
- 解决Tomcat加载时报APR错的问题
部署Tomcat的时候出现了如下错误, INFO: The APR based Apache Tomcat Native library which allows optimal performanc ...
- 二十八 Python分布式爬虫打造搜索引擎Scrapy精讲—cookie禁用、自动限速、自定义spider的settings,对抗反爬机制
cookie禁用 就是在Scrapy的配置文件settings.py里禁用掉cookie禁用,可以防止被通过cookie禁用识别到是爬虫,注意,只适用于不需要登录的网页,cookie禁用后是无法登录的 ...
- Highcharts 3D柱形图;Highcharts 堆叠3D柱形图;Highcharts 3D饼图;Highcharts 3D圆环图
Highcharts 3D柱形图 配置 chart.options3d 配置 以下列出了 3D 图的基本配置,设置 chart 的 type 属性为 column,options3d 选项可设置三维效 ...
- Ansible 小手册系列 十五(Blocks 分组)
当我们想在满足一个条件下,执行多个任务时,就需要分组了.而不再每个任务都要用when. tasks: - block: - command: echo 1 - shell: echo 2 - raw: ...
- laravel中新建文件并保存数据到文件中
//base_path()获取当前的绝对路径 $path=base_path().'\config\web.php'; $str='abcdefg'; //要声明的字符串 file_put_conte ...
- django-pymysql-封装的sql使用
封装的sql import pymysql def get_list(sql,args): conn = pymysql.connect(host=, user='root', passwd='', ...
- wxWidgets的配置
参考 :http://www.codeproject.com/Articles/11515/Introduction-to-wxWidgets 我是将D:\wxWidgets-3.0.1,中 编译过 ...