BZOJ2820 YY的GCD


Description

神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入

Input

第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M

Output

T行,每行一个整数表示第i组数据的结果

Sample Input

2
10 10
100 100

Sample Output

30
2791

HINT

T = 10000
N, M <= 10000000



//yangkai
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int N=1e7+10;
int T,n,m,tot=0;
bool mark[N];
int pri[N],mu[N];
LL F[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<N;j++){
mark[i*pri[j]]=1;
if(!(i%pri[j])){//已经存在过pri[j],出现平方因子
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
//预处理F数组
for(int i=1;i<N;i++)
for(int j=1;j<=tot&&i*pri[j]<N;j++)
F[i*pri[j]]+=mu[i];
for(int i=1;i<N;i++)F[i]+=F[i-1];
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int up=min(n,m);
LL ans=0;
//下底函数分块计算
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(F[j]-F[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return 0;
}

BZOJ2820 YY的GCD 【莫比乌斯反演】的更多相关文章

  1. BZOJ2820:YY的GCD(莫比乌斯反演)

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...

  2. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  3. bzoj 2820 YY的GCD 莫比乌斯反演

    题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...

  4. BZOJ2820 YY的GCD 莫比乌斯+系数前缀和

    /** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...

  5. 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)

    题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...

  6. 【BZOJ2820】YY的GCD [莫比乌斯反演]

    YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...

  7. BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】

    2820: YY的GCD Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1624  Solved: 853[Submit][Status][Discu ...

  8. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  9. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  10. BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)

    题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...

随机推荐

  1. 51Nod 1521 一维战舰

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1521 思路:先计算出一开始最多能放多少艘战舰,然后每次输入一个点后,找到 ...

  2. has~和belongsTo的区别?

    在某一个class里面,class_name所对应的表为主表(父), 关系函数方法里面的第一个参数所对应的表为从属表(子), 即为与主表相关联的表. $has~ 1.外键保存在关联表中:  2.保存时 ...

  3. OpenID 和 OAuth 的区别及第三方登录的安全隐患分析

    转自:http://itindex.net/detail/48552-openid-oauth-%E6%96%B9%E7%99%BB 发表时间:2014-03-13 19:09 | 作者:天梯梦 出处 ...

  4. go-statsd项目

    linux命令: 进程:top 收包丢包:netstat -su[c持续输出] go tool pprof: 我们可以使用go tool pprof命令来交互式的访问概要文件的内容.命令将会分析指定的 ...

  5. SSM配置Socket多线程编程(RFID签到实例)

    1.SocketServiceLoader.java package cn.xydata.pharmacy.api.app.test; import javax.servlet.ServletCont ...

  6. Dir命令

    注: 此系列为自己之前所搭建网站内容. 其实python的os模块能够很好的完成此任务.改天总结下. 之前在处理气象数据时,十几个文件,文件名比较长,需要自己处理变动的年份找出地址的规律再进行文件的读 ...

  7. Ansible 小手册系列 三(命令介绍)

    仅仅只是介绍,可以选择跳过 ansible ansible是指令核心部分,其主要用于执行ad-hoc命令,即单条命令.默认后面需要跟主机和选项部分,默认不指定模块时,使用的是command模块. Us ...

  8. Neutron二层网络服务实现原理

    网络 ​ 网络(network)是一个隔离的二层网段,类似于物理网络世界中的虚拟 LAN (VLAN).更具体来讲,它是为创建它的租户而保留的一个广播域,或者被显式配置为共享网段.端口和子网始终被分配 ...

  9. js字符串操作方法

    1.字符方法: str.charAt(): 可以访问字符串中特定的字符,可以接受0至字符串长度-1的数字作为参数,返回该位置下的字符,如果参数超出该范围,返回空字符串,如果没有参数,返回位置为0的字符 ...

  10. python获取文件路径, 文件名, 后缀名

    def get_filePath_fileName_fileExt(fileUrl): """ 获取文件路径, 文件名, 后缀名 :param fileUrl: :ret ...