BZOJ2820 YY的GCD 【莫比乌斯反演】
BZOJ2820 YY的GCD
Description
神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然不会了,于是向你来请教……多组输入
Input
第一行一个整数T 表述数据组数接下来T行,每行两个正整数,表示N, M
Output
T行,每行一个整数表示第i组数据的结果
Sample Input
2
10 10
100 100
Sample Output
30
2791
HINT
T = 10000
N, M <= 10000000

//yangkai
#include<bits/stdc++.h>
using namespace std;
#define LL long long
const int N=1e7+10;
int T,n,m,tot=0;
bool mark[N];
int pri[N],mu[N];
LL F[N]={0};
void init(){
mu[1]=1;
for(int i=2;i<N;i++){
if(!mark[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<N;j++){
mark[i*pri[j]]=1;
if(!(i%pri[j])){//已经存在过pri[j],出现平方因子
mu[i*pri[j]]=0;
break;
}else mu[i*pri[j]]=-mu[i];
}
}
//预处理F数组
for(int i=1;i<N;i++)
for(int j=1;j<=tot&&i*pri[j]<N;j++)
F[i*pri[j]]+=mu[i];
for(int i=1;i<N;i++)F[i]+=F[i-1];
}
int main(){
init();
scanf("%d",&T);
while(T--){
scanf("%d%d",&n,&m);
int up=min(n,m);
LL ans=0;
//下底函数分块计算
for(int i=1,j;i<=up;i=j+1){
j=min(n/(n/i),m/(m/i));
ans+=(F[j]-F[i-1])*(n/i)*(m/i);
}
printf("%lld\n",ans);
}
return 0;
}
BZOJ2820 YY的GCD 【莫比乌斯反演】的更多相关文章
- BZOJ2820:YY的GCD(莫比乌斯反演)
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- BZOJ2820 YY的GCD 莫比乌斯+系数前缀和
/** 题目:BZOJ2820 YY的GCD 链接:http://www.cogs.pro/cogs/problem/problem.php?pid=2165 题意:神犇YY虐完数论后给傻×kAc出了 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...
- 【BZOJ2820】YY的GCD [莫比乌斯反演]
YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description 求1<=x<=N, ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- jmeter-负载
主: remote_hosts=10.0.70.35:1099,10.0.70.47:1099 server.rmi.localport=1099 从: remote_hosts=10.0.70.3 ...
- tp5---树形菜单
composer require bluem/tree
- JavaScript封装Ajax工具函数及jQuery中的ajax,xhr在IE的兼容
封装ajax工具函数 首先要思考:1.为什么要封装它?提高开发效率2.把一些不确定的情况考虑在其中 a. 请求方式 b. 请求地址 c. 是否异步 d. 发送参数 e. 成功处理 f. 失败处理3.确 ...
- poj1113凸包
就是求凸包的周长加以l为半径的圆周长,证明略 由于之前写过叉积,所以graham扫描算法不是很难理解 #include<map> #include<set> #include& ...
- nyoj——113 getline
字符串替换 时间限制:3000 ms | 内存限制:65535 KB 难度:2 描述 编写一个程序实现将字符串中的所有"you"替换成"we" 输入 ...
- C++复习3.C/C++常量的知识
C/C++常量的知识 20130918 语言的实现隐含着使用着一些常量,如初始化全局变量静态变量,另外还有一些我们不曾感觉到的变量:函数地址(也就是函数名称), 静态数组的名字,字符串常亮的地址.常量 ...
- Git添加远程库
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- JSON数组字典解析
遇到这样的字典数组字符串 priceRange = "[{\"id\":149075584861800,\"price\":9.9,\"nu ...
- igmpproxy源代码学习——igmpProxyInit()
igmpproxy源代码学习--igmpProxyInit()函数详解,igmpproxy初始化 在运行igmpproxy的主程序igmpproxyRun()之前需要对igmpproxy进行一些配置, ...
- device-independent bitmap (DIB) 设备无关位图
设备无关位图即独立于设备的位图(DIB)与"Device-Dependent Bitmaps (DDB) 设备相关位图"相比,它不再依赖于具体的设备,从而更适合在不同的计算机之间传 ...