Grids

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 953    Accepted Submission(s): 418

Problem Description
  度度熊最近很喜欢玩游戏。这一天他在纸上画了一个2行N列的长方形格子。他想把1到2N这些数依次放进去,但是为了使格子看起来优美,他想找到使每行每列都递增的方案。不过画了很久,他发现方案数实在是太多了。度度熊想知道,有多少种放数字的方法能满足上面的条件?
 
Input
  第一行为数据组数T(1<=T<=100000)。
  然后T行,每行为一个数N(1<=N<=1000000)表示长方形的大小。
 
Output
  对于每组数据,输出符合题意的方案数。由于数字可能非常大,你只需要把最后的结果对1000000007取模即可。
 
Sample Input
2
1
3
 
Sample Output
Case #1:
1
Case #2:
5

Hint

对于第二组样例,共5种方案,具体方案为:

 
Source
 暴力找出前几项可知  1,2,5,14,42、、、容易看出是卡特兰数,递推公式   f(n+1)=(4*n-6)/n*f(n)  |  f(1)=f(2)=1   n>=2;
由于数很大需要取模用到了逆元,这里上界100w所以用了打表法,唯一要注意的一点就是,在处理4-6/n时,由于减法可能出现负数
我们写成 ( 4-6*inv[n]+mod )的形式但是这样还是会出现负数,因为6*inv[n]可能大于mod,这里只要多加几个mod即可解决
 #include<bits/stdc++.h>
using namespace std;
#define LL long long
const LL mod=1e9+;
LL inv[]={,};
LL cat[]={,,};
void init()
{
for(int i=;i<=;++i)
inv[i]=(mod-mod/i)*inv[mod%i]%mod;
for(int i=;i<=;++i)
cat[i]=cat[i-]*((+*mod-*inv[i-])%mod)%mod;
}
int main()
{
int t,k=,i,n;
scanf("%d",&t);
init();
for(i=;i<=t;++i){
scanf("%d",&n);
printf("Case #%d:\n%lld\n",i,cat[n+]);
}
return ;
}

HDU 4828 逆元+catalan数的更多相关文章

  1. HDU 4828 - Grids (Catalan数)

    题目链接 : http://acm.hdu.edu.cn/showproblem.php?pid=4828 Catalan数的公式为 C[n+1] = C[n] * (4 * n + 2) / (n ...

  2. hdu 4828 Grids 卡特兰数+逆元

    Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Problem D ...

  3. HDU 1023 Catalan数+高精度

    链接:HDU 1023 /**************************************** * author : Grant Yuan * time : 2014/10/19 15:5 ...

  4. HDU 4828 (卡特兰数+逆元)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看 ...

  5. HDU 4828 (卡特兰数+逆)

    HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0.后n个人标为1.然后去全排列,全排列的数列.假设每一个1的前面相应的0大于等于1,那么就是满足的序列,假设把0看成入栈,1看 ...

  6. hdu 4828 Grids(拓展欧几里得+卡特兰数)

    题目链接:hdu 4828 Grids 题目大意:略. 解题思路:将上一行看成是入栈,下一行看成是出栈,那么执着的方案就是卡特兰数,用递推的方式求解. #include <cstdio> ...

  7. HNU 12933 Random Walks Catalan数 阶乘求逆元新技能

    一个Catalan数的题,打表对每个数都求一次逆元会T,于是问到了一种求阶乘逆元的打表新方法. 比如打一个1~n的阶乘的逆元的表,假如叫inv[n],可以先用费马小定理什么的求出inv[n],再用递推 ...

  8. hdu 1130 How Many Trees?(Catalan数)

    How Many Trees? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) ...

  9. HDU 1023 Train Problem II 大数打表Catalan数

    一个出栈有多少种顺序的问题.一般都知道是Catalan数了. 问题是这个Catalan数非常大,故此须要使用高精度计算. 并且打表会速度快非常多.打表公式要熟记: Catalan数公式 Cn=C(2n ...

随机推荐

  1. [转]linux shell 获取当前正在执行脚本的绝对路径

    原文链接:http://sexywp.com/bash-how-to-get-the-basepath-of-current-running-script.htm 常见的一种误区,是使用 pwd 命令 ...

  2. 我与前端之间不得不说的三天两夜之html基础

    HTML 初识 分类 cs模式 client-server bs模式 Browser-server web服务本质 from socket import * def main(): service=s ...

  3. CSS中定义a:link、a:visited、a:hover、a:active顺序

    a :link.a:hover.a:visited这几个元素,定义CSS时候的顺序不同,也会直接导致链接显示的效果不同. eg:让未访问链接颜色为red,活动链接为yellow,已访问链接为green ...

  4. 防止 IOS 和 安卓 自动锁屏

    Ios代码 在文件AppController中的 didFinishLaunchingWithOptions函数中加一行代码即可: [[UIApplication sharedApplication] ...

  5. python替换一个文件里面的特定内容

    f = open("1.txt", "r", encoding="utf-8") f_new = open("2.txt" ...

  6. java单例模式之懒汉式分析

    转自:http://blog.csdn.net/withiter/article/details/8140338 今天中午闲着没事,就随便写点关于Java单例模式的.其实单例模式实现有很多方法,这里我 ...

  7. java中静态变量,静态代码块,静态方法,实例变量,匿名代码块等的加载顺序

    转自:http://blog.csdn.net/mrzhoug/article/details/51581994 一.在Java中,使用”{}”括起来的代码称为代码块,代码块可以分为以下四种: 1.普 ...

  8. ubuntu下通过mono+jexus布署mvc5网站

    本文使用的ubuntu为14.04 LTS 一.安装mono,本文使用源码安装的方式 1.搭架mono编译环境 sudo apt-get update sudo apt-get install bui ...

  9. Codeforces 235C. Cyclical Quest

    传送门 写的时候挺蛋疼的. 刚开始的时候思路没跑偏,无非就是建个SAM然后把串开两倍然后在SAM上跑完后统计贡献.但是卡在第二个样例上就是没考虑相同的情况. 然后开始乱搞,发现会出现相同串的只有可能是 ...

  10. 20145314郑凯杰 《Java程序设计》第5周学习总结

    20145314郑凯杰 <Java程序设计>第5周学习总结 教材学习内容总结 托管的代码: 电脑上的代码: try与catch 简单来说,try与catch是两个块,java的程序会把正常 ...