n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0

0<n,m<=2*10^4

可持久化并查集是用可持久化线段树维护的,唯一的区别就在于多了一个find操作,可持久化线段树实际上只维护了一个可持久化数组,只需要维护最下面的一层即可

/**************************************************************
Problem: 3673
User: walfy
Language: C++
Result: Accepted
Time:120 ms
Memory:13096 kb
****************************************************************/ //#pragma comment(linker, "/stack:200000000")
//#pragma GCC optimize("Ofast,no-stack-protector")
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native")
//#pragma GCC optimize("unroll-loops")
#include<bits/stdc++.h>
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define pi acos(-1.0)
#define ll long long
#define mod 1000000007
#define C 0.5772156649
//#define ls l,m,rt<<1
//#define rs m+1,r,rt<<1|1
#define pil pair<int,ll>
#define pii pair<int,int>
#define cd complex<double>
#define ull unsigned long long
#define base 1000000000000000000
#define fio ios::sync_with_stdio(false);cin.tie(0) using namespace std; const double g=10.0,eps=1e-;
const int N=+,maxn=+,inf=0x3f3f3f3f,INF=0x3f3f3f3f3f3f3f3f; int ls[N*],rs[N*],rt[N],tot,val[N*];
int n,m;
void build(int &o,int l,int r)
{
o=++tot;
if(l==r)
{
val[o]=l;
return ;
}
int m=(l+r)>>;
build(ls[o],l,m);build(rs[o],m+,r);
}
void update(int &o,int l,int r,int last,int pos,int x)
{
o=++tot;
ls[o]=ls[last];rs[o]=rs[last];
if(l==r)
{
val[o]=x;
return ;
}
int m=(l+r)>>;
if(pos<=m)update(ls[o],l,m,ls[last],pos,x);
else update(rs[o],m+,r,rs[last],pos,x);
}
int query(int o,int l,int r,int pos)
{
if(l==r)return val[o];
int m=(l+r)>>;
if(pos<=m)return query(ls[o],l,m,pos);
else return query(rs[o],m+,r,pos);
}
int Find(int &o,int x)
{
int te=query(o,,n,x);
if(te==x)return x;
else
{
int pp=Find(o,te);
update(o,,n,o,te,pp);
return pp;
}
}
int main()
{
scanf("%d%d",&n,&m);
build(rt[],,n);
for(int i=;i<=m;i++)
{
int op;
scanf("%d",&op);
if(op==)
{
int x,y;
scanf("%d%d",&x,&y);
int fx=Find(rt[i-],x),fy=Find(rt[i-],y);
if(fx==fy)rt[i]=rt[i-];
else update(rt[i],,n,rt[i-],fx,fy);
}
else if(op==)
{
int x;scanf("%d",&x);
rt[i]=rt[x];
}
else
{
int x,y;scanf("%d%d",&x,&y);
int fx=Find(rt[i-],x),fy=Find(rt[i-],y);
if(fx==fy)puts("");
else puts("");
rt[i]=rt[i-];
}
}
return ;
}
/******************** ********************/

bzoj3673可持久化并查集的更多相关文章

  1. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  2. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  3. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  4. [bzoj3673] 可持久化并查集 by zky

    总感觉到现在才来写这题有点奇怪. 并查集如果按秩合并的话,每次合并只会修改一个点的父亲. 用可持久化线段树来实现可持久化数组就行了.. 然而我写的是按子树大小合并..结果比按秩合并慢了一点>_& ...

  5. [BZOJ3674]可持久化并查集加强版&[BZOJ3673]可持久化并查集 by zky

    思路: 用主席树维护并查集森林,每次连接时新增结点. 似乎并不需要启发式合并,我随随便便写了一个就跑到了3674第一页?3673是这题的弱化版,本来写个暴力就能过,现在借用加强版的代码(去掉异或),直 ...

  6. BZOJ3673 可持久化并查集 by zky 可持久化 并查集

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3673 题意概括 n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的 ...

  7. bzoj3673: 可持久化并查集 by zky&&3674: 可持久化并查集加强版

    主席树可持久化数组,还挺好YY的 然而加强版要路径压缩.. 发现压了都RE 结果看了看数据,默默的把让fx的父亲变成fy反过来让fy的父亲变成fx 搞笑啊 #include<cstdio> ...

  8. BZOJ3673 : 可持久化并查集

    题目没有强制在线! 考虑离线做法. 把操作建立成一棵树的结构,然后按照欧拉序遍历,每次转移要么是一次合并操作,要么是一次撤销合并操作,可以看成是分离操作. 用LCT维护集合,合并就是加边,分离就是删边 ...

  9. bzoj3673 & bzoj3674 & 洛谷P3402 可持久化并查集

    题目:bzoj3673:https://www.lydsy.com/JudgeOnline/problem.php?id=3673 bzoj3674:https://www.lydsy.com/Jud ...

随机推荐

  1. JAVA中重写equals()方法为什么要重写hashcode()方法?

    object对象中的 public boolean equals(Object obj),对于任何非空引用值 x 和 y,当且仅当 x 和 y 引用同一个对象时,此方法才返回 true:注意:当此方法 ...

  2. Tfs更新 TfsConfig

    Start TfsJobAgent TfsServiceControl unquiesce 更新serviving状态 TfsConfig diagnose /scope:updates TfsCon ...

  3. Unity状态机的实现,以《塔防》为例

    什么是有限状态机? 通俗点讲,有限状态机是:将对象的状态(攻击.闲置.晕眩)的实现代码,提取出来,封装成状态.由状态机负责在各个状态之间调度. 对象持有状态管理类(状态机)的引用,与具体的状态解耦. ...

  4. Ubuntu下安装keras

    0 系统版本Ubuntu16.04 1 系统更新 sudo apt update sudo apt upgrade 2 安装python基础开发包 sudo apt install -y python ...

  5. 20145316《Java程序设计》第二周学习总结

    20145316<Java程序设计>第2周学习总结 教材学习内容总结 3.1.1 Java的类型 分为基本类型(Primitive type)和类类型(Class type) 基本类型: ...

  6. 浅谈HTTP请求与响应

    HTTP协议用于客户端和服务器之间的通信,请求访问的一段是客户端,提供资源响应的一段是服务器端. HTTP通信是采用请求应答的方式来进行的,客户端发出请求,服务器响应.如果没有客户端的请求,服务器端是 ...

  7. spring中bean实例化时机以及整个运转方式

    接上一篇文章,一般在servlet获取到请求之后 在service方法中就可以完成所有的请求处理以及返回,但是我们会采用更高级的MVC框架来做.也就是说所有的MVC框架入口就是serlvet中的ser ...

  8. Android事件处理下(按键、触摸屏和滚动球的一些实现细节)

    http://www.cnblogs.com/andtt/articles/2145563.html 对于按键事件,调用mDevices[i]->layoutMap->map进行映射.映射 ...

  9. Python面试题目之(针对dict或者set数据类型)边遍历 边修改 报错dictionary changed size during iteration

    # result 是一个字典, 把里面属性值是None的属性删除 for key in result: if not result[key]: del result[key] continue 但是报 ...

  10. hadoop HA + kerberos HA集群搭建问题和测试总结

    1.  常见问题 (1)hostname设置问题.vi /etc/sysconfig/network (2)集群/etc/hosts没有统一. (3)yarn slave需要单独启动../sbin/y ...