poj 2096Collecting Bugs
题目链接
题解
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中-->p1 = ij / (ns)
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统-->p2 = (n-i)j / (ns)
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统-->p3 = i(s-j) / (ns)
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统-->p4 = (n-i)(s-j) / (ns)
dp[i][j] = \(\sum 由XX转移来的期望\)
发现dp[i][j]不能用dp[i][j] 更新,移项有去除dp[i][j]列转移方程
代码
#include<cstdio>
#include<algorithm>
inline int read() {
int x = 0;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x;
}
const int maxn = 1007;
int n,s;
double dp[maxn][maxn];
int main() {
n = read();s = read();
for(int i = n;i >= 0;-- i) {
for(int j = s;j >= 0;-- j) {
if(i == n && s == j) continue;
double p1 = 1.0 * i * j / (1.0 * n * s);
double p2 = 1.0 * (n - i) * j / (1.0 * n * s);
double p3 = 1.0 * i * (s - j) / (1.0 * n * s);
double p4 = 1.0 * (n - i) * (s - j) / (1.0 * n * s);
dp[i][j] = double (dp[i + 1][j] * p2 + dp[i][j + 1] * p3 + dp[i + 1][j + 1] * p4 + 1) / (1 - p1);
}
}
printf("%.4lf\n",dp[0][0]);
return 0;
}
poj 2096Collecting Bugs的更多相关文章
- POJ 2096-Collecting Bugs(概率dp入门)
题意: 有n种bug和s种系统bug,每天发现一种bug(可能已经发现过了)所有种bug被发现的概率相同,求所有bug被发现的期望天数. 分析: dp[i][j]发现i种bug,j种系统bug期望天数 ...
- POJ 1038 Bugs Integrated, Inc.
AC通道 神坑的一道题,写了三遍. 两点半开始写的, 第一遍是直接维护两行的二进制.理论上是没问题的,看POJ discuss 上也有人实现了,但是我敲完后准备开始调了.然后就莫名其妙的以为会超时,就 ...
- POJ 1038 Bugs Integrated, Inc.(DFS + 三进制状压 + 滚动数组 思维)题解
题意:n*m方格,有些格子有黑点,问你最多裁处几张2 * 3(3 * 2)的无黑点格子. 思路:我们放置2 * 3格子时可以把状态压缩到三进制: 关于状压:POJ-1038 Bugs Integrat ...
- POJ 1038 Bugs Integrated, Inc. ——状压DP
状态压缩一下当前各格子以及上面总共放了几块,只有012三种情况,直接三进制保存即可. 然后转移的时候用搜索找出所有的状态进行转移. #include <map> #include < ...
- POJ 1038 Bugs Integrated Inc (复杂的状压DP)
$ POJ~1038~~\times Bugs~Integrated~Inc: $ (复杂的状压DP) $ solution: $ 很纠结的一道题目,写了大半天,就想练练手,结果这手生的.其实根据之前 ...
- poj 1038 Bugs Integrated, Inc. 题解
提供一种代码难度比较简单的做法(可能) 状态表示: 设置状态$ f[i][j] $,表示第 \(i\) 行状态为 \(j\) 的最大放置数,因为这是个阴间题,因为题目内存设置很小,所以要用滚动数组,存 ...
- OpenJudge / Poj 1044 Date bugs C++
链接地址: Poj:http://poj.org/problem?id=1044 OpenJudge:http://bailian.openjudge.cn/practice/1044/ 题目: 总时 ...
- poj 2096 Collecting Bugs - 概率与期望 - 动态规划
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- POJ 2096 Collecting Bugs 期望dp
题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...
随机推荐
- matlab核函数与滑窗
在处理图像时,为了提取特征,经常用各种核函数和图像进行卷积,其实就是通过一个矩阵以滑窗的形式与原图像进行点乘求和,可以看作对一个像素和附近像素进行了加权平均. 比如经常用3x3的近似高斯卷积核 0 1 ...
- https://segmentfault.com/bookmark/1230000008276077
https://segmentfault.com/bookmark/1230000008276077
- sg函数&&子状态的讨论
题目链接:https://cn.vjudge.net/contest/269933#problem/H 具体思路:首先,这是一个公平的比赛,并且是两个人参与,两个人都足够聪明,并且可以通过有限步结束比 ...
- 图片轮播器——jquery插件
下载:http://files.cnblogs.com/files/wordblog/jiaoben828.rar
- perl6正则 3: 行开头与结尾与多行开头,多行结尾
^ $ 匹配一行的开头或结尾, 可以用 ^ 或 $. > so 'abcde' ~~ /e$/ True > so 'abcdef' ~~ /e$/ False > so 'abcd ...
- select count(*) from user注入
先来看一条sql语句: mysql; +------+----------+----------+------------+ | id | username | password | flag | + ...
- 64_t2
texlive-biblatex-chem-doc-svn42065-33.fc26.2.no..> 24-May-2017 15:44 1044190 texlive-biblatex-che ...
- Petrozavodsk Winter Training Camp 2018
Petrozavodsk Winter Training Camp 2018 Problem A. Mines 题目描述:有\(n\)个炸弹放在\(x\)轴上,第\(i\)个位置为\(p_i\),爆炸 ...
- python安装模块的时候报错error: command 'gcc' failed with exit status 1
[情况] 在写Python代码的时候,需要用到psutil模块,需要安装. 但是在安装时,报错:error: command 'gcc' failed with exit status 1 [解决步骤 ...
- 在rhel7上搭建centos7的yum源
1. 再查看现在主机上的yum源,并将它们删除 [root@localhost ~]# rpm -qa|grep yum | xargs rpm -e --nodeps # --nodeps 不管有没 ...