poj 2096Collecting Bugs
题目链接
题解
dp[i][j]表示已经找到i种bug,并存在于j个子系统中,要达到目标状态的天数的期望。
显然,dp[n][s]=0,因为已经达到目标了。而dp[0][0]就是我们要求的答案。
dp[i][j]状态可以转化成以下四种:
dp[i][j] 发现一个bug属于已经找到的i种bug和j个子系统中-->p1 = ij / (ns)
dp[i+1][j] 发现一个bug属于新的一种bug,但属于已经找到的j种子系统-->p2 = (n-i)j / (ns)
dp[i][j+1] 发现一个bug属于已经找到的i种bug,但属于新的子系统-->p3 = i(s-j) / (ns)
dp[i+1][j+1]发现一个bug属于新的一种bug和新的一个子系统-->p4 = (n-i)(s-j) / (ns)
dp[i][j] = \(\sum 由XX转移来的期望\)
发现dp[i][j]不能用dp[i][j] 更新,移项有去除dp[i][j]列转移方程
代码
#include<cstdio>
#include<algorithm>
inline int read() {
int x = 0;
char c = getchar();
while(c < '0' || c > '9')c = getchar();
while(c <= '9' && c >= '0')x = x * 10 + c - '0',c = getchar();
return x;
}
const int maxn = 1007;
int n,s;
double dp[maxn][maxn];
int main() {
n = read();s = read();
for(int i = n;i >= 0;-- i) {
for(int j = s;j >= 0;-- j) {
if(i == n && s == j) continue;
double p1 = 1.0 * i * j / (1.0 * n * s);
double p2 = 1.0 * (n - i) * j / (1.0 * n * s);
double p3 = 1.0 * i * (s - j) / (1.0 * n * s);
double p4 = 1.0 * (n - i) * (s - j) / (1.0 * n * s);
dp[i][j] = double (dp[i + 1][j] * p2 + dp[i][j + 1] * p3 + dp[i + 1][j + 1] * p4 + 1) / (1 - p1);
}
}
printf("%.4lf\n",dp[0][0]);
return 0;
}
poj 2096Collecting Bugs的更多相关文章
- POJ 2096-Collecting Bugs(概率dp入门)
题意: 有n种bug和s种系统bug,每天发现一种bug(可能已经发现过了)所有种bug被发现的概率相同,求所有bug被发现的期望天数. 分析: dp[i][j]发现i种bug,j种系统bug期望天数 ...
- POJ 1038 Bugs Integrated, Inc.
AC通道 神坑的一道题,写了三遍. 两点半开始写的, 第一遍是直接维护两行的二进制.理论上是没问题的,看POJ discuss 上也有人实现了,但是我敲完后准备开始调了.然后就莫名其妙的以为会超时,就 ...
- POJ 1038 Bugs Integrated, Inc.(DFS + 三进制状压 + 滚动数组 思维)题解
题意:n*m方格,有些格子有黑点,问你最多裁处几张2 * 3(3 * 2)的无黑点格子. 思路:我们放置2 * 3格子时可以把状态压缩到三进制: 关于状压:POJ-1038 Bugs Integrat ...
- POJ 1038 Bugs Integrated, Inc. ——状压DP
状态压缩一下当前各格子以及上面总共放了几块,只有012三种情况,直接三进制保存即可. 然后转移的时候用搜索找出所有的状态进行转移. #include <map> #include < ...
- POJ 1038 Bugs Integrated Inc (复杂的状压DP)
$ POJ~1038~~\times Bugs~Integrated~Inc: $ (复杂的状压DP) $ solution: $ 很纠结的一道题目,写了大半天,就想练练手,结果这手生的.其实根据之前 ...
- poj 1038 Bugs Integrated, Inc. 题解
提供一种代码难度比较简单的做法(可能) 状态表示: 设置状态$ f[i][j] $,表示第 \(i\) 行状态为 \(j\) 的最大放置数,因为这是个阴间题,因为题目内存设置很小,所以要用滚动数组,存 ...
- OpenJudge / Poj 1044 Date bugs C++
链接地址: Poj:http://poj.org/problem?id=1044 OpenJudge:http://bailian.openjudge.cn/practice/1044/ 题目: 总时 ...
- poj 2096 Collecting Bugs - 概率与期望 - 动态规划
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
- POJ 2096 Collecting Bugs 期望dp
题目链接: http://poj.org/problem?id=2096 Collecting Bugs Time Limit: 10000MSMemory Limit: 64000K 问题描述 Iv ...
随机推荐
- JavaScript定义类的几种方式
提起面向对象我们就能想到类,对象,封装,继承,多态.在<javaScript高级程序设计>(人民邮电出版社,曹力.张欣译.英文名字是:Professional JavaScript for ...
- DOM使用
DOM树模型 document |-html |-head |-.... |-body |-..... 要解析页面的前提是要拿到一个对象,然后利用树之间前后的关系进行对象的遍历和操作. 在DHTML的 ...
- Map集合的两种取出方式
Map集合有两种取出方式, 1.keySet:将Map中的键存入Set集合,利用set的迭代器来处理所有的键 举例代码如下: import java.util.*; class Test { publ ...
- 【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)
[题意]给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径).n<=50000,m<=10^7. [算法]DFS树处理仙人掌 [题解]参考:仙人掌相关问题的处理方法(未完 ...
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- 2017ACM暑期多校联合训练 - Team 2 1006 HDU 6050 Funny Function (找规律 矩阵快速幂)
题目链接 Problem Description Function Fx,ysatisfies: For given integers N and M,calculate Fm,1 modulo 1e ...
- htmlunit爬虫工具使用--模拟浏览器发送请求,获取JS动态生成的页面内容
Htmlunit是一款模拟浏览抓取页面内容的java框架,具有js解析引擎(rhino),可以解析页面的js脚本,得到完整的页面内容,特殊适合于这种非完整页面的站点抓取. 下载地址: https:// ...
- mysql开启GTID跳过错误的方法【转】
1.数据库版本 MySQL> select version() -> ;+-------------------------------------------+| version( ...
- nginx location 指令意义
基本语法:location [=|~|~*|^~] /uri/ { … } = 严格匹配.如果这个查询匹配,那么将停止搜索并立即处理此请求.~ 为区分大小写匹配(可用正则表达式)!~为区分大小写不匹配 ...
- java并发编程实战笔记---(第五章)基础构建模块
. 5.1同步容器类 1.同步容器类的问题 复合操作,加容器内置锁 2.迭代器与concurrentModificationException 迭代容器用iterator, 迭代过程中,如果有其他线程 ...