题目大意

    上下有两个长度为n、位置对应的序列A、B,其中数的范围均为1~n。若abs(A[i]-B[j]) <= 4,则A[i]与B[j]间可以连一条边。现要求在边与边不相交的情况下的最大的连边数量。n <= 10^5。

  在Gold里,此题的数据范围是1000,我们完全可以用简单的最长公共连续子序列的DP方法来做。

  范围大了之后,可以观察到对于一个数A[i],它所能转移的状态最多只有9个,那么就可以顺序扫描A数组,设F[i][j]表示当前连得最后一条边为(A[i],B[to[i][j]])的最优解。to[i][j]即A[i]能转移到的B[i]的位置(顺序从小到大)。建立一棵线段树,表示最后连的边中的数B在B数组的位置时,所能得到的最优解。F[i][j]就可以直接logn查询,logn把F[i][j]更新到线段树中。

  

#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <string>
#include <algorithm>
#include <iostream> using namespace std; const int maxn = ;
int n, a[maxn], b[maxn];
int f[maxn][], cnt[maxn], to[maxn];
int adj[maxn][];
struct Tree
{
int maxv[maxn*];
Tree()
{
memset(maxv, , sizeof(maxv));
}
void pushup(int rt)
{
maxv[rt] = max(maxv[rt<<], maxv[(rt<<)+]);
}
void update(int rt, int l, int r, int p, int d)
{
if (l == r)
{
maxv[rt] = max(maxv[rt], d);
return ;
}
int mid = (l+r)>>;
if (p <= mid)
update(rt<<, l, mid, p, d);
else
update((rt<<)+, mid+, r, p, d);
pushup(rt);
}
int query(int rt, int l, int r, int L, int R)
{
if (L <= l && r <= R)
return maxv[rt];
int mid = (l+r)>>, ret = ;
if (L <= mid)
ret = max(ret, query(rt<<, l, mid, L, R));
if (R > mid)
ret = max(ret, query((rt<<)+, mid+, r, L, R));
return ret;
}
}T; int main()
{
freopen("nocross.in", "r", stdin);
freopen("nocross.out", "w", stdout);
scanf("%d", &n);
for (int i = ; i <= n; ++i)
scanf("%d", &a[i]);
for (int i = ; i <= n; ++i)
scanf("%d", &b[i]), to[b[i]] = i;
for (int i = ; i <= n; ++i)
{
int l = a[i]-, r = a[i]+;
if (l < )
l = ;
if (r > n)
r = n;
cnt[i] = ;
for (int j = l; j <= r; ++j)
adj[i][++cnt[i]] = to[j];
sort(adj[i]+, adj[i]+cnt[i]+);
}
for (int i = ; i <= n; ++i)
{
for (int j = ; j <= cnt[i]; ++j)
if (adj[i][j]- >= )
f[i][j] = T.query(, , n, , adj[i][j]-)+;
else
f[i][j] = ;
for (int j = ; j <= cnt[i]; ++j)
if (adj[i][j]- >= )
T.update(, , n, adj[i][j], f[i][j]);
}
printf("%d\n", T.maxv[]);
return ;
}

  

USACO 2017 FEB Platinum nocross DP的更多相关文章

  1. USACO 2017 FEB Platinum mincross 可持久化线段树

    题意 上下有两个位置分别对应的序列A.B,长度为n,两序列为n的一个排列.当Ai == Bj时,上下会连一条边.你可以选择序列A或者序列B进行旋转任意K步,如 3 4 1 5 2 旋转两步为 5 2 ...

  2. USACO 2017 February Platinum

    第二次参加USACO 本来打算2016-2017全勤的 January的好像忘记打了 听群里有人讨论才想起来铂金组三题很有意思,都是两个排列的交叉对问题 我最后得分889/1000(真的菜) T1.W ...

  3. USACO 2017 January Platinum

    因为之前忘做了,赶紧补上. T1.Promotion Counting 题目大意:给定一个以1为根的N个节点的树(N<=100,000),每个节点有一个权值,对于每个节点求出权值比它大的子孙的个 ...

  4. [USACO 2017 Feb Gold] Tutorial

    Link: 传送门 A: 分层图最短路(其实就是最短路转移时多记录一维的数据 #include <bits/stdc++.h> using namespace std; #define X ...

  5. USACO 2017 FEB Gold visitfj 最短路

    题意 有一幅n*n的方格图,n <= 100,每个点上有一个值.从(1,1)出发,走到(n,n),只能走四联通.每走一步花费t,每走三步需要花费走完三步后到达格子的值.求最小花费的值. 拆点,d ...

  6. [ USACO 2017 FEB ] Why Did the Cow Cross the Road III (Gold)

    \(\\\) \(Description\) 给定长度为\(2N\)的序列,\(1\text ~N\)各出现过\(2\)次,\(i\)第一次出现位置记为\(a_i\),第二次记为\(b_i\),求满足 ...

  7. Usaco 2019 Jan Platinum

    Usaco 2019 Jan Platinum 要不是昨天老师给我们考了这套题,我都不知道usaco还有铂金这么一级. 插播一则新闻:杨神坚持认为铂金比黄金简单,原因竟是:铜 汞 银 铂 金(金属活动 ...

  8. [USACO 2018 Feb Gold] Tutorial

    Link: USACO 2018 Feb Gold 传送门 A: $dp[i][j][k]$表示前$i$个中有$j$个0且末位为$k$的最优解 状态数$O(n^3)$ #include <bit ...

  9. [USACO 2017 Dec Gold] Tutorial

    Link: USACO 2017 Dec Gold 传送门 A: 为了保证复杂度明显是从终结点往回退 结果一开始全在想优化建边$dfs$……其实可以不用建边直接$multiset$找可行边跑$bfs$ ...

随机推荐

  1. S3C6410 SPI全双工读写流程分析(原创)【转】

    转自:http://blog.csdn.net/hustyangju/article/details/21165721 原创博文,知识共享!转载请注明出处:http://blog.csdn.net/h ...

  2. Linux 内核进程管理之进程ID【转】

    转自:http://www.cnblogs.com/hazir/p/linux_kernel_pid.html Linux 内核使用 task_struct 数据结构来关联所有与进程有关的数据和结构, ...

  3. php判断是手机还是pc访问从而走不同url

    <?php header("Content-type:text/html;charset=utf-8"); function is_mobile(){ $user_agent ...

  4. 2.rabbitmq 工作队列

    1. 生产者 #coding:utf8 import pika import json import sys message = ''.join(sys.argv[1:]) or "hell ...

  5. CSU 1102 多连块拼图

    多连块拼图 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述     多连块是指由多个等大正方形边与边连接而成的平面连通图形.         ———— 维基百科      ...

  6. JavaScript 兼容性总结

     请实现鼠标点击任意标签,alert该标签的名称(注意兼容性) function elementName(evt){ evt = evt|| window.event; var selected = ...

  7. [Matlab]Upper Triangularization & Back Substitution代码

    用来做数值计算作业的代码,来自Numerical Methods Using Matlab (4th Edition) [John H. Mathews, Kurtis K. Fink],改了一下注释 ...

  8. 使用递归计算n的阶乘n!

    计算n! 观察公式2可以直接使用递归求解 C++代码如下: #include <iostream> using namespace std; unsigned func(unsigned ...

  9. Python的hasattr() getattr() setattr() 函数使用方法(简介)

    hasattr(object, name)判断一个对象里面是否有name属性或者name方法,返回BOOL值,有name特性返回True, 否则返回False.需要注意的是name要用括号括起来 1 ...

  10. loadrunner场景中按scenario和group执行的区别

    group:多个脚本之间按照独立设置模式跑,各个脚本可以单独设置虚拟用户.运行时间等 scenario:多个脚本之间按照相同的模式跑,将总的虚拟用户数按照一定的比例分配给各个脚本