HDU 5656 CA Loves GCD dp
CA Loves GCD
题目连接:
http://acm.hdu.edu.cn/showproblem.php?pid=5656
Description
CA is a fine comrade who loves the party and people; inevitably she loves GCD (greatest common divisor) too.
Now, there are N different numbers. Each time, CA will select several numbers (at least one), and find the GCD of these numbers. In order to have fun, CA will try every selection. After that, she wants to know the sum of all GCDs.
If and only if there is a number exists in a selection, but does not exist in another one, we think these two selections are different from each other.
Input
First line contains T denoting the number of testcases.
T testcases follow. Each testcase contains a integer in the first time, denoting N, the number of the numbers CA have. The second line is N numbers.
We guarantee that all numbers in the test are in the range [1,1000].
1≤T≤50
Output
T lines, each line prints the sum of GCDs mod 100000007.
Sample Input
2
2
2 4
3
1 2 3
Sample Output
8
10
Hint
题意
给n个数,然后你可以选择若干个数出来,然后求他的gcd
然后现在让你遍历所有的方案,问你所有方案的和是多少
题解:
dp[i][j]表示现在选了i个数,gcd为j的方案数
dp[i][j]->dp[i+1][j],dp[i+1][gcd(a[i+1],j)]
然后不停转移就好了
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1050;
const int mod = 100000007;
int dp[maxn][maxn],a[maxn],n;
long long ans;
int gcd(int a,int b)
{
return b==0?a:gcd(b,a%b);
}
void solve()
{
memset(dp,0,sizeof(dp));dp[0][0]=1;ans=0;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=0;i<n;i++)
for(int j=0;j<maxn;j++)if(dp[i][j])
{
(dp[i+1][j]+=dp[i][j])%=mod;
(dp[i+1][gcd(j,a[i+1])]+=dp[i][j])%=mod;
}
for(int i=1;i<maxn;i++) (ans+=1ll*i*dp[n][i]%mod)%=mod;
printf("%d\n",ans);
}
int main()
{
int t;scanf("%d",&t);
while(t--)solve();
}
HDU 5656 CA Loves GCD dp的更多相关文章
- hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)
CA Loves GCD Accepts: 64 Submissions: 535 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 2 ...
- HDU 5656 CA Loves GCD (数论DP)
CA Loves GCD 题目链接: http://acm.hust.edu.cn/vjudge/contest/123316#problem/B Description CA is a fine c ...
- HDU 5656 ——CA Loves GCD——————【dp】
CA Loves GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)To ...
- HDU 5656 CA Loves GCD 01背包+gcd
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/con ...
- 数学(GCD,计数原理)HDU 5656 CA Loves GCD
CA Loves GCD Accepts: 135 Submissions: 586 Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 2621 ...
- hdu 5656 CA Loves GCD
CA Loves GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)To ...
- hdu 5656 CA Loves GCD(dp)
题目的意思就是: n个数,求n个数所有子集的最大公约数之和. 第一种方法: 枚举子集,求每一种子集的gcd之和,n=1000,复杂度O(2^n). 谁去用? 所以只能优化! 题目中有很重要的一句话! ...
- HDU 5656 CA Loves GCD (容斥)
题意:给定一个数组,每次他会从中选出若干个(至少一个数),求出所有数的GCD然后放回去,为了使自己不会无聊,会把每种不同的选法都选一遍,想知道他得到的所有GCD的和是多少. 析:枚举gcd,然后求每个 ...
- hdu-5656 CA Loves GCD(dp+数论)
题目链接: CA Loves GCD Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Ot ...
随机推荐
- Django1.10中文文档—模型
模型是你的数据的唯一的.权威的信息源.它包含你所储存数据的必要字段和操作行为.通常,每个模型都对应着数据库中的唯一一张表. 基础认识: 每个model都是一个继承django.db.models. ...
- OAuth认证与授权
什么是OAuth授权? 一.什么是OAuth协议 OAuth(开放授权)是一个开放标准. 允许第三方网站在用户授权的前提下访问在用户在服务商那里存储的各种信息. 而这种授权无需将用户提供用户名和密 ...
- 在Linux 系统上运行多个tomcat
--原来的不动,添加环境变量(.bash_profile)export JAVA_HOME=/home/public/jdk1.8.0_131export JRE_HOME=$JAVA_HOME/jr ...
- openjudge-NOI 2.6基本算法之动态规划 专题题解目录
1.1759 最长上升子序列 2.1768 最大子矩阵 3.1775 采药 4.1808 公共子序列 5.1944 吃糖果 6.1996 登山 7.2000 最长公共子上升序列 8.2718 移动路线 ...
- java并发-同步容器类
java平台类库包含了丰富的并发基础构建模块,如线程安全的容器类以及各种用于协调多个相互协作的线程控制流的同步工具类. 同步容器类 同步容器类包括Vector和Hashtable,是早期JDK的一部分 ...
- Oracle常用sql语句(二)之组函数、多表查询
DML(数据操纵语言) INSERT .UPDATE. DELETE 插入操作:INSERT: 语法: INSERT INTO 表名(列名1,列名2 ...)VALUES(列值1,列值2...); 注 ...
- leetcode 之Valid Sudoku(七)
判断行.列.九宫格内数字是否重复. 按照行.列.九宫格进行检查即可. bool validSudoku(const vector<vector<char>>& boar ...
- css3代码整理—弹性盒子篇
父级使用弹性盒子: #fu{ display:flex; } 父级中子级的对齐方式: 1.水平对齐方式:两端对齐 #fu { display:flex; justify-content:space-b ...
- 面试题30:最小的K个数
方法一:利用partition void GetLeastNumbers_Solution1(int* input, int n, int* output, int k) { || k <= ) ...
- Python全栈开发之8、装饰器详解
一文让你彻底明白Python装饰器原理,从此面试工作再也不怕了.转载请注明出处http://www.cnblogs.com/Wxtrkbc/p/5486253.html 一.装饰器 装饰器可以使函数执 ...