BZOJ1018 堵塞的交通(线段树)
题目很好明白,然后实现很神奇。首先如果考虑并查集的话,对于删边和加边操作我们无法同时进行。然后暴力分块的话,复杂度是O(n sqrt n) ,不是很优。于是看了题解,发现了线段树的神奇用途。
我们维护每个矩形四个顶点的六个变量,分别是:
g[0]:表示第一行左右端点的连通性。
g[1]:表示第二行左右端点的连通性。
g[2]:左上端点和左下端点的连通性。
g[3]:右上端点和右下端点的连通性。
g[4]:左上端点和右下端点的连通性。
g[5]:左下端点和右上端点的连通性。
这六个变量做好之后就可以合并矩形了。同样是这六个变量,合并的时候需要费点事,考虑一下各种情况。
最后需要的一点就是可能出现的特殊情况,这样的怎么办?
我们考虑全面即可,查询的时候不光查询一个区间,还需要查询两头的区间,然后判断是否会出现这种情况,就是我写的solve函数里面判断答案的后三种情况。 ——by VANE
#include<bits/stdc++.h>
using namespace std;
const int N=;
struct node{bool g[];};
int n;
node s[],t[N*];
bool m[N*];
int calc(int x,int y){return x*(n-)+y;}
void build(int rt,int l,int r)
{
if(l==r) {t[rt]=s[];return;}
int mid=l+r>>;
build(rt<<,l,mid);
build(rt<<|,mid+,r);
}
node merge(node a,node b,bool x,bool y)
{
node c;
c.g[]=(a.g[]&&x&&b.g[])||(a.g[]&&y&&b.g[]);
c.g[]=(a.g[]&&y&&b.g[])||(a.g[]&&x&&b.g[]);
c.g[]=(a.g[])||(a.g[]&&x&&b.g[]&&y&&a.g[]);
c.g[]=(b.g[])||(b.g[]&&x&&a.g[]&&y&&b.g[]);
c.g[]=(a.g[]&&x&&b.g[])||(a.g[]&&y&&b.g[]);
c.g[]=(b.g[]&&x&&a.g[])||(b.g[]&&y&&a.g[]);
return c;
}
void insert(int rt,int l,int r,int x,int y,int xx,int yy,bool c)
{
int mid=l+r>>;
if(x==xx&&y==mid)
{
m[calc(x,y)]=c;
t[rt]=merge(t[rt<<],t[rt<<|],m[calc(,mid)],m[calc(,mid)]);
return;
}
else if(x!=xx&&l==r){t[rt]=s[c];return;}
if(y<=mid) insert(rt<<,l,mid,x,y,xx,yy,c);
if(y>mid) insert(rt<<|,mid+,r,x,y,xx,yy,c);
t[rt]=merge(t[rt<<],t[rt<<|],m[calc(,mid)],m[calc(,mid)]);
}
node query(int rt,int l,int r,int ll,int rr)
{
int mid=r+l>>;
if(l>=ll&&r<=rr) return t[rt];
if(rr<=mid)return query(rt<<,l,mid,ll,rr);
if(ll>mid) return query(rt<<|,mid+,r,ll,rr);
return merge(query(rt<<,l,mid,ll,rr),query(rt<<|,mid+,r,ll,rr),m[calc(,mid)],m[calc(,mid)]);
}
void solve(int x,int y,int xx,int yy)
{
bool ans;
s[]=query(,,n,,y);
s[]=query(,,n,y,yy);
s[]=query(,,n,yy,n);
if(x==xx) ans=(s[].g[x])||(s[].g[]&&s[].g[+x^])||(s[].g[]&&s[].g[+x])||(s[].g[]&&s[].g[]&&s[].g[x^]);
else ans=(s[].g[+x])||(s[].g[]&&s[].g[x^])||(s[].g[]&&s[].g[x])||(s[].g[]&&s[].g[+x^]&&s[].g[]);
if(ans) puts("Y");
else puts("N"); }
int main()
{
scanf("%d",&n);
s[]=(node){,,,,,};
s[]=(node){,,,,,};
memset(t,,sizeof t);
memset(m,,sizeof m);
build(,,n);
char ch[];scanf("%s",ch);
while(ch[]!='E')
{
int x,y,xx,yy;scanf("%d%d%d%d",&x,&y,&xx,&yy);
if(y>yy) swap(x,xx),swap(y,yy);
x--;xx--;
if(ch[]=='O') insert(,,n,x,y,xx,yy,);
else if(ch[]=='C') insert(,,n,x,y,xx,yy,);
else solve(x,y,xx,yy);
scanf("%s",ch);
}
}
BZOJ1018 堵塞的交通(线段树)的更多相关文章
- BZOJ1018[SHOI2008]堵塞的交通——线段树
题目描述 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一条道路,所以总 ...
- bzoj1018/luogu4246 堵塞的交通 (线段树)
对于一个区间四个角的点,可以用线段树记下来它们两两的联通情况 区间[l,r]通过两个子区间[l,m],[m+1,r]来更新,相当于合并[l,m],[m+1,r],用(m,m+1)这条边来合并 查询a, ...
- Luogu P4246 [SHOI2008]堵塞的交通(线段树+模拟)
P4246 [SHOI2008]堵塞的交通 题意 题目描述 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个\(2\)行\(C\)列的矩形 ...
- BZOJ.1018.[SHOI2008]堵塞的交通(线段树维护连通性)
题目链接 只有两行,可能的路径数不多,考虑用线段树维护各种路径的连通性. 每个节点记录luru(left_up->right_up),lurd,ldru,ldrd,luld,rurd,表示这个区 ...
- [HNOI2014] 道路堵塞 - 最短路,线段树
对不起对不起,辣鸡蒟蒻又来用核弹打蚊子了 完全ignore了题目给出的最短路,手工搞出一个最短路,发现对答案没什么影响 所以干脆转化为经典问题:每次询问删掉一条边后的最短路 如果删掉的是非最短路边,那 ...
- [BZOJ1018]堵塞的交通traffic
Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个2行C列的矩形网格,网格上的每个点代表一个城市,相邻的城市之间有一 ...
- 【BZOJ1018】堵塞的交通(线段树)
[BZOJ1018]堵塞的交通(线段树) 题面 Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可 以被看成是一个2行C列的矩形网 ...
- 【BZOJ1018】[SHOI2008]堵塞的交通traffic 线段树
[BZOJ1018][SHOI2008]堵塞的交通traffic Description 有一天,由于某种穿越现象作用,你来到了传说中的小人国.小人国的布局非常奇特,整个国家的交通系统可以被看成是一个 ...
- [bzoj1018][SHOI2008]堵塞的交通traffic_线段树
bzoj-1018 SHOI-2008 堵塞的交通traffic 参考博客:https://www.cnblogs.com/MashiroSky/p/5973686.html 题目大意:有一天,由于某 ...
随机推荐
- 【BZOJ】1485: [HNOI2009]有趣的数列
[算法]Catalan数 [题解] 学了卡特兰数就会啦>_<! 因为奇偶各自递增,所以确定了奇偶各自的数字后排列唯一. 那么就是给2n个数分奇偶了,是不是有点像入栈出栈序呢. 将做偶数标为 ...
- iOS静态库 ---iOS-Apple苹果官方文档翻译
iOS静态库 ---iOS-Apple苹果官方文档翻译 •什么是库? 库是共享程序代码的方式,一般分为静态库和动态库.静态库与动态库的区别? 静态库:链接时完整地拷贝至可执行文件中,被多次使⽤用就为什 ...
- Axure RP 授权码
Axure RP 8.1.0.3372Licensee:KoshyKey:wTADPqxn3KChzJxLmUr5jTTitCgsfRkftQQ1yIG9HmK83MYSm7GPxLREGn+Ii6x ...
- python基础===用9种方式生成新的对象
class Point: def __init__(self, x, y): self.x = x self.y = y point1 = Point(1, 2) point2 = eval(&quo ...
- queue_delayed_work和queue_work区别 (转http://blog.csdn.net/dosculler/article/details/7968101)
queue_delayed_work和queue_work 一.参考文献: 1)http://www.linuxidc.com/Linux/2011-08/41655.htm queue_delaye ...
- 64_t5
texlive-mkpattern-svn15878.1.2-33.fc26.2.noarch..> 24-May-2017 15:54 38178 texlive-mkpic-bin-svn3 ...
- elasticsearch删除索引报错【原】
如果elasticsearch删除索引报错 curl -X DELETE 'http://10.73.26.66:9200/httpd-34-2017.08.15' {"error" ...
- Python排序算法之插入排序
# 插入排序的工作原理是,对于每个未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入.## 步骤:## 从第一个元素开始,该元素可以认为已经被排序# 取出下一个元素,在已经排序的元素序列中从后 ...
- git中如何查看一个文件的修改(更新)历史
有些时候有些文件或文件夹被移除了, 或者更换了路径或被改名了, 想跟踪一下这个文件被修改(更新)的历史, 可以用如下命令: git log -p matser -- filename 格式是: git ...
- Python股票信息抓取(二)
在一的基础上,想着把所有的折线图放在一个图中,然后图的结果如图所示: 不是略丑,是很丑~ 依然的单进程,只是将图标结果放在了一张图里 代码如下: #-*-coding:utf-8 -*- import ...