精确覆盖问题:在一个0-1矩阵中,选定部分行,使得每一列都有且只有一个1。求解一种选法

舞蹈链(Dance Link),也就是一个循环十字链表,可以快速的删掉和恢复某行某列

结合了舞蹈链的搜索就称作DLX算法

这里贴一个用DLX算法解决16×16数独的代码

9×9的直接暴力会更好

 // LA2659 Sudoku
// Rujia Liu
#include<cstdio>
#include<cstring>
#include<vector> using namespace std; const int maxr = ;
const int maxn = ;
const int maxnode = ; // 行编号从1开始,列编号为1~n,结点0是表头结点; 结点1~n是各列顶部的虚拟结点
struct DLX {
int n, sz; // 列数,结点总数
int S[maxn]; // 各列结点数 int row[maxnode], col[maxnode]; // 各结点行列编号
int L[maxnode], R[maxnode], U[maxnode], D[maxnode]; // 十字链表 int ansd, ans[maxr]; // 解 void init(int n) { // n是列数
this->n = n; // 虚拟结点
for(int i = ; i <= n; i++) {
U[i] = i; D[i] = i; L[i] = i-, R[i] = i+;
}
R[n] = ; L[] = n; sz = n + ;
memset(S, , sizeof(S));
} void addRow(int r, vector<int> columns) {
int first = sz;
for(int i = ; i < columns.size(); i++) {
int c = columns[i];
L[sz] = sz - ; R[sz] = sz + ; D[sz] = c; U[sz] = U[c];
D[U[c]] = sz; U[c] = sz;
row[sz] = r; col[sz] = c;
S[c]++; sz++;
}
R[sz - ] = first; L[first] = sz - ;
} // 顺着链表A,遍历除s外的其他元素
#define FOR(i,A,s) for(int i = A[s]; i != s; i = A[i]) void remove(int c) {
L[R[c]] = L[c];
R[L[c]] = R[c];
FOR(i,D,c)
FOR(j,R,i) { U[D[j]] = U[j]; D[U[j]] = D[j]; --S[col[j]]; }
} void restore(int c) {
FOR(i,U,c)
FOR(j,L,i) { ++S[col[j]]; U[D[j]] = j; D[U[j]] = j; }
L[R[c]] = c;
R[L[c]] = c;
} // d为递归深度
bool dfs(int d) {
if (R[] == ) { // 找到解
ansd = d; // 记录解的长度
return true;
} // 找S最小的列c
int c = R[]; // 第一个未删除的列
FOR(i,R,) if(S[i] < S[c]) c = i; remove(c); // 删除第c列
FOR(i,D,c) { // 用结点i所在行覆盖第c列
ans[d] = row[i];
FOR(j,R,i) remove(col[j]); // 删除结点i所在行能覆盖的所有其他列
if(dfs(d+)) return true;
FOR(j,L,i) restore(col[j]); // 恢复结点i所在行能覆盖的所有其他列
}
restore(c); // 恢复第c列 return false;
} bool solve(vector<int>& v) {
v.clear();
if(!dfs()) return false;
for(int i = ; i < ansd; i++) v.push_back(ans[i]);
return true;
} }; ////////////// 题目相关
#include<cassert> DLX solver; const int SLOT = ;
const int ROW = ;
const int COL = ;
const int SUB = ; // 行/列的统一编解码函数。从1开始编号
int encode(int a, int b, int c) {
return a*+b*+c+;
} void decode(int code, int& a, int& b, int& c) {
code--;
c = code%; code /= ;
b = code%; code /= ;
a = code;
} char puzzle[][]; bool read() {
for(int i = ; i < ; i++)
if(scanf("%s", puzzle[i]) != ) return false;
return true;
} int main() {
int kase = ;
while(read()) {
if(++kase != ) printf("\n");
solver.init();
for(int r = ; r < ; r++)
for(int c = ; c < ; c++)
for(int v = ; v < ; v++)
if(puzzle[r][c] == '-' || puzzle[r][c] == 'A'+v) {
vector<int> columns;
columns.push_back(encode(SLOT, r, c));
columns.push_back(encode(ROW, r, v));
columns.push_back(encode(COL, c, v));
columns.push_back(encode(SUB, (r/)*+c/, v));
solver.addRow(encode(r, c, v), columns);
} vector<int> ans;
assert(solver.solve(ans)); for(int i = ; i < ans.size(); i++) {
int r, c, v;
decode(ans[i], r, c, v);
puzzle[r][c] = 'A'+v;
}
for(int i = ; i < ; i++)
printf("%s\n", puzzle[i]);
}
return ;
}

搜索:DLX算法的更多相关文章

  1. [蘑菇街] 搜索、算法团队招募牛人啦-年底了走过路过不要错过 - V2EX

    [蘑菇街] 搜索.算法团队招募牛人啦-年底了走过路过不要错过 - V2EX [蘑菇街] 搜索.算法团队招募牛人啦-年底了走过路过不要错过

  2. 关于用舞蹈链DLX算法求解数独的解析

    欢迎访问——该文出处-博客园-zhouzhendong 去博客园看该文章--传送门 描述 在做DLX算法题中,经常会做到数独类型的题目,那么,如何求解数独类型的题目?其实,学了数独的构建方法,那么DL ...

  3. 【DLX算法】hdu3498 whosyourdaddy

    题意:给你一个01矩阵,让你选择尽可能少的行数,使得这些行的并集能够覆盖到所有列. DLX算法求解重复覆盖问题模板,使用估价函数进行剪枝. #include<cstdio> #includ ...

  4. 【DLX算法】poj2676 Sudoku

    DLX算法求解精确覆盖问题模板.赛场上可以参见白书. #include<cstdio> #include<cstring> #include<vector> usi ...

  5. Python排序搜索基本算法之归并排序实例分析

    Python排序搜索基本算法之归并排序实例分析 本文实例讲述了Python排序搜索基本算法之归并排序.分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序 ...

  6. 搜索相关性算法在 DiDi Food 中的搜索

    导读:今天给大家分享的主题是搜索匹配问题在 DiDi Food 中的一些探索与应用.本文首先介绍了搜索相关性的一些背景,之后介绍了业界常见的三种匹配模型,以及在DiDi Food业务中的模型效果对比. ...

  7. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

  8. 广度优先搜索 BFS算法

    广度优先搜索算法(Breadth-First-Search,BFS),又称作宽度优先搜索.BFS算法是从根节点开始,沿着树的宽度遍历树的节点.如果所有节点均被访问,则算法中止. 算法思想 1.首先将根 ...

  9. DLX算法一览

    目录: 1 X思想的了解. 链表的递归与回溯. 具体操作. 优化. 一些应用与应用中的再次优化(例题). 练手题 X思想的了解. 首先了解DLX是什么? DLX是一种多元未饱和型指令集结构,DLX 代 ...

随机推荐

  1. 前端系列之HTML基础知识概述

    1.什么是HTML HTML:Hyper Text Markup Language :超文本标记语言. 超文本:功能比普通文本更加强大. 标记语言:使用一组标签对内容进行描述的语言,它不是编程语言. ...

  2. C++ Primer Plus学习:第二章

    C++入门第二章:开始学习C++ 进入C++ 首先,以下是一个C++程序: //myfirst.cpp 显示一行文字 #include<iostream> //预处理器编译指令 int m ...

  3. linux 内核态调试函数BUG_ON()[转]

    一些内核调用可以用来方便标记bug,提供断言并输出信息.最常用的两个是BUG()和BUG_ON(). 当被调用的时候,它们会引发oops,导致栈的回溯和错误信息的打印.为什么这些声明会导致 oops跟 ...

  4. Mac & how to uninstall LANDesk

    Mac & how to uninstall LANDesk http://eddiejackson.net/wp/?p=9036 https://community.ivanti.com/d ...

  5. DateTime Toxxx() 方法获取时间

    直接上代码 static void Main(string[] args) { DateTime time = DateTime.Now; Console.WriteLine("ToFile ...

  6. java map的 keyset()方法

  7. xshell代理设置

    1.宿主机设置隧道 上面的端口随意,不与本机使用的端口重合即可,下面的端口是管理系统的端口 2.宿主机上面创建的虚机设置代理 3.怎么通过web浏览器直接登录虚机ip网址:https://blog.c ...

  8. BZOJ4899 记忆的轮廓(概率期望+动态规划+决策单调性)

    容易发现跟树没什么关系,可以预处理出每个点若走向分叉点期望走多少步才能回到上个存档点,就变为链上问题了.考虑dp,显然有f[i][j]表示在i~n中设置了j个存档点,其中i设置存档点的最优期望步数.转 ...

  9. Ants UVA - 1411(km板题竟然让我换了个板子)

    题意: 给出n个白点和n个黑点的坐标,要求用n条不相交的线段把它们连接起来,其中每条线段恰好连接一个白点和一个黑点,每个点恰好连接到一条线段 解析: 带入负的欧几里得距离求就好了 假设a1-b1 与 ...

  10. Django模板语言循环字典

    1. 对于字典,可以有下列用法: {% for row in user_dict.keys %} {% for row in user_dict.values %} {% for row in use ...