HDU 1299 基础数论 分解
给一个数n问有多少种x,y的组合使$\frac{1}{x}+\frac{1}{y}=\frac{1}{n},x<=y$满足,设y = k + n,代入得到$x = \frac{n^2}{k} + n$,也就是求n^2的因子数量
/** @Date : 2017-09-08 10:45:12
* @FileName: HDU 1299 数论 分解.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8; int pri[N];
int vis[N];
int c = 0;
void prime()
{
MMF(vis);
for(int i = 2; i < N; i++)
{
if(!vis[i])
vis[i] = 1, pri[c++] = i;
for(int j = 0; j < c && i * pri[j] < N; j++)
{
vis[i*pri[j]] = 1;
if(i % pri[j] == 0)
break;
}
}
} int main()
{
prime();
int T;
cin >> T;
int icase = 0;
while(T--)
{
LL n;
scanf("%lld", &n);
LL t = n * n;//直接对n^2分解不对?
LL cnt = 1;
for(int i = 0; i < c && pri[i] * pri[i] <= n; i++)
{
if(n % pri[i] == 0)
{
LL tmp = 0;
while(n % pri[i] == 0 && n)
n /= pri[i], tmp++;
cnt *= tmp*2+1;
}
}
if(n > 1)
cnt *= 3;
cnt = (cnt + 1) / 2;
printf("Scenario #%d:\n", ++icase);
printf("%lld\n\n", cnt);
}
return 0;
}
HDU 1299 基础数论 分解的更多相关文章
- HDU 1333 基础数论 暴力
定义一种数位simth数,该数的各位之和等于其所有质因子所有位数字之和,现给出n求大于n的最小该种数,n最大不超过8位,那么直接暴力就可以了. /** @Date : 2017-09-08 14:12 ...
- hdu 1299 Diophantus of Alexandria(数学题)
题目链接:hdu 1299 Diophantus of Alexandria 题意: 给你一个n,让你找1/x+1/y=1/n的方案数. 题解: 对于这种数学题,一般都变变形,找找规律,通过打表我们可 ...
- HDU 2509 基础Anti-SG NIM
如果我们规定当局面中所有的单一游戏的SG值为0时,游戏结束,则先手必胜当且仅当:(1)游戏的SG!=0 && 存在单一游戏的SG>1:(2)游戏的SG==0 && ...
- HDU 3537 基础翻硬币模型 Mock Turtles 向NIM转化
翻硬币游戏,任意选3个,最右边的一个必须是正面.不能操作者败. 基本模型..不太可能自己推 还是老实记下来吧..对于单个硬币的SG值为2x或2x+1,当该硬币的位置x,其二进制1的个数为偶数时,sg= ...
- HDU 2188 基础bash博弈
基础的bash博弈,两人捐钱,每次不超过m,谁先捐到n谁胜. 对于一个初始值n,如果其不为(m+1)的倍数,那么先手把余数拿掉,后继游戏中不管如何,后手操作后必定会有数余下,那么先手必胜,反之后手必胜 ...
- HDU 2176 基础NIM 输出方案
普通的NIM,然后问先手必胜第一次操作后的所有局面. 对于一个必胜局面只要转变局面SG值为必败(SG=0)留给后手就行了. /** @Date : 2017-10-13 21:39:13 * @Fil ...
- LightOJ1214 Large Division 基础数论+同余定理
Given two integers, a and b, you should check whether a is divisible by b or not. We know that an in ...
- HDU-1576 A/B 基础数论+解题报告
HDU-1576 A/B 基础数论+解题报告 题意 求(A/B)%9973,但由于A很大,我们只给出n(n=A%9973) (我们给定的A必能被B整除,且gcd(B,9973) = 1). 输入 数据 ...
- hdu 1299 Diophantus of Alexandria (数论)
Diophantus of Alexandria Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java ...
随机推荐
- HDU 4747 Mex 递推/线段树
题目链接: acm.hdu.edu.cn/showproblem.php?pid=4747 Mex Time Limit: 15000/5000 MS (Java/Others)Memory Limi ...
- JAVA第三次笔记
- 爬虫学习之-xpath
1.XPATH使用方法 使用XPATH有如下几种方法定位元素(相比CSS选择器,方法稍微多一点): a.通过绝对路径定位元素(不推荐!) WebElement ele = driver.findEle ...
- linux php 访问sql server设置
1.安装freeTDS wget ftp://ftp.freetds.org/pub/freetds/stable/freetds-stable.tgz 1.1.进入到你下载的目录然后解压.tar - ...
- js滚动异步加载数据的思路
<body> <div style="width:200px; height:1000px; border:1px solid red;" id="to ...
- html5兼容
You can download the latest version of HTML5shiv from github or reference the CDN version at https:/ ...
- 洛谷 P4139 上帝与集合的正确用法
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- 【CF55D】Beautiful numbers(动态规划)
[CF55D]Beautiful numbers(动态规划) 题面 洛谷 CF 题解 数位\(dp\) 如果当前数能够被它所有数位整除,意味着它能够被所有数位的\(lcm\)整除. 所以\(dp\)的 ...
- Codeforces Round #338 (Div. 2) B dp
B. Longtail Hedgehog time limit per test 3 seconds memory limit per test 256 megabytes input standar ...
- bzoj4873 [Shoi2017]寿司餐厅
Input 第一行包含两个正整数n,m,分别表示这家餐厅提供的寿司总数和计算寿司价格中使用的常数. 第二行包含n个正整数,其中第k个数ak表示第k份寿司的代号. 接下来n行,第i行包含n-i+1个整数 ...