最近做一个系列博客,跟着stackoverflow学Pandas。

以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序:

https://stackoverflow.com/questions/tagged/pandas?sort=votes&pageSize=15

Select rows from a DataFrame based on values in a column -pandas 筛选

https://stackoverflow.com/questions/17071871/select-rows-from-a-dataframe-based-on-values-in-a-column-in-pandas

pandas的筛选功能,跟excel的筛选功能类似,但是功能更强大。

在SQL数据中, 我们可以用这样的语句:

select * from table where colume_name = some_value. 

bool 索引

在Pandas的DataFrame格式中可以采用 bool 值作为索引,选取数据行。比如:

import pandas as pd

# Create data set
d = {'foo':[100, 111, 222],
     'bar':[333, 444, 555]}
df = pd.DataFrame(d)
# Full dataframe:
df
# Shows:
#    bar   foo
# 0  333   100
# 1  444   111
# 2  555   222

# bool 值索引

df[[True, False, True]] # 或 df.loc[[True, False, True]]
# 都可以得到

#   bar foo
#0  333 100
#1  444 111

所以,如果想通过数值来对行进行筛选,我们可以通过构造bool值来选择DataFrame的行

  1. df[df['column_name'] == some_value] 如果是数值型,也可以采用 >/<

  2. df[df['column_name'].isin(some_values)] some_values 可以是单个变量,也可以是list 或者迭代器

  3. 组合多种条件

df[(df['column_name'] == some_value) & df['other_column'].isin(some_values)]

df[(df['column_name'] == some_value) | df['other_column'].isin(some_values)]
#注意,& | 的优先级很高,所以每个条件都需要一个括号
  1. 不等于,可以使用
df[~df['column_name'].isin(some_values)]

df[df['column_name'] != some_value]

np.where

与上面所述的方法有所不同, np.where 返回的是行的位置,所以在获取行时不能采用df, 要采用df.loc 或者 df.iloc

np.where(df.A.values=='foo')
# (array([0, 2, 4, 6, 7]),)
df.iloc[np.where(df.A.values=='foo')]

query

DataFrame 提供了query函数,方便我们可以采用表达式来进行数据的筛选。

参考:

http://pandas.pydata.org/pandas-docs/version/0.17.0/indexing.html#indexing-query

n = 10
df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))

#    b  c
# 0  9  0
# 1  1  2
# 2  2  4
# 3  7  6
# 4  6  4
# 5  4  7
# 6  2  9
# 7  4  8
# 8  6  2
# 9  9  0

df.query('index > b > c')
#   b   c
# 8 6   2

#可以采用的表达式很多,比如
df.query('(a < b) & (b < c)')
df.query('a < b and b < c')
df.query('color == "red"')

时间测评

import pandas as pd
df = pd.DataFrame({'A': 'foo bar foo bar foo bar foo foo'.split(),
                   'B': 'one one two three two two one three'.split()})
df.iloc[np.where(df.A.values=='foo')]

%timeit df.iloc[np.where(df.A.values=='foo')]
#1000 loops, best of 3: 274 µs per loop

%timeit df.loc[np.where(df.A.values=='foo')]
#1000 loops, best of 3: 342 µs per loop

%timeit df.loc[df['A'] == 'foo']
#1000 loops, best of 3: 347 µs per loop

%timeit df[df['A'] == 'foo']
#1000 loops, best of 3: 354 µs per loop

%timeit df.loc[df['A'].isin(['foo'])]
#1000 loops, best of 3: 265 µs per loop

%timeit df[df.A=='foo']
#1000 loops, best of 3: 357 µs per loop

%timeit df.query('(A=="foo")')
#1000 loops, best of 3: 943 µs per loop

可以发现采用 df.iloc[np.where(df.A.values=='foo')]df.loc[df['A'].isin(['foo'])] 速度比较快, 而采用query的方法比较慢。

df.loc[df['A'] == 'foo'] 速度快于 df[df['A'] == 'foo']

【跟着stackoverflow学Pandas】Select rows from a DataFrame based on values in a column -pandas 筛选的更多相关文章

  1. 【跟着stackoverflow学Pandas】How to iterate over rows in a DataFrame in Pandas-DataFrame按行迭代

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  2. 【跟着stackoverflow学Pandas】 - Adding new column to existing DataFrame in Python pandas - Pandas 添加列

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  3. 【跟着stackoverflow学Pandas】 -Get list from pandas DataFrame column headers - Pandas 获取列名

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  4. 【跟着stackoverflow学Pandas】add one row in a pandas.DataFrame -DataFrame添加行

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  5. 【跟着stackoverflow学Pandas】“Large data” work flows using pandas-pandas大数据处理流程

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  6. 【跟着stackoverflow学Pandas】Delete column from pandas DataFrame-删除列

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  7. 【跟着stackoverflow学Pandas】Renaming columns in pandas-列的重命名

    最近做一个系列博客,跟着stackoverflow学Pandas. 以 pandas作为关键词,在stackoverflow中进行搜索,随后安照 votes 数目进行排序: https://stack ...

  8. 跟着百度学PHP[14]-PDO之Mysql的事务处理2

    前面所将仅仅是在纯mysql下的讲解,这节就是要将其搬到PDO台面上来了. 将自动提交关闭. SetAttribute下有一个PDO::ATTR_AUTOCOMMIT 将其设置为0即可关闭,如:$pd ...

  9. 【跟着大佬学JavaScript】之节流

    前言 js的典型的场景 监听页面的scroll事件 拖拽事件 监听鼠标的 mousemove 事件 ... 这些事件会频繁触发会影响性能,如果使用节流,降低频次,保留了用户体验,又提升了执行速度,节省 ...

随机推荐

  1. LSTM java 实现

    由于实验室事情缘故,需要将Python写的神经网络转成Java版本的,但是python中的numpy等啥包也不知道在Java里面对应的是什么工具,所以索性直接寻找一个现成可用的Java神经网络框架,于 ...

  2. 20145335《java程序设计》第10周学习总结

    20145335郝昊 <Java程序设计>第10周学习总结 教材学习内容总结 网络编程 网络编程就是在两个或两个以上的设备(例如计算机)之间传输数据.程序员所作的事情就是把数据发送到指定的 ...

  3. Kali视频学习6-10

    Kali视频学习6-10 kali信息收集之主机探测 主机探测指识别目标机器是否可用(简单来说是否在线),在探测过程中,需要得到目标是否online等信息.由于IDS和(入侵检测系统)和IPS(入侵保 ...

  4. ARTS Week 002

    Algorithm Leetcode 2. Add Two Numbers You are given two non-empty linked lists representing two non- ...

  5. 浅谈web应用的负载均衡、集群、高可用(HA)解决方案

    http://aokunsang.iteye.com/blog/2053719   声明:以下仅为个人的一些总结和随写,如有不对之处,还请看到的网友指出,以免误导. (详细的配置方案请google,这 ...

  6. nxp的layerscape系列芯片中的rcw指定了一些什么信息

    答:指定了一些可以配置的硬件信息(如可以配置uart相关的引脚功能).引导镜像(uboot)的读取地址以及从何种介质(flash,sd)启动系统的信息

  7. SaltStack部署服务及配置管理apache+php-第二篇

    实验目标 1.使用SaltStack部署apache和php, 2.使用salt管理httpd.conf配置文件配置访问info.php使用账户密码 3.在salt里面增加对conf.d目录进行配置管 ...

  8. LeetCode——Coin Change

    Question You are given coins of different denominations and a total amount of money amount. Write a ...

  9. LeetCode——Is Subsequence

    Question Given a string s and a string t, check if s is subsequence of t. You may assume that there ...

  10. 解题报告:hdu1003 Max Sum - 最大连续区间和 - 计算开头和结尾

    2017-09-06 21:32:22 writer:pprp 可以作为一个模板 /* @theme: hdu1003 Max Sum @writer:pprp @end:21:26 @declare ...