4027: [HEOI2015]兔子与樱花

Description

很久很久之前,森林里住着一群兔子。有一天,兔子们突然决定要去看樱花。兔子们所在森林里的樱花树很特殊。樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1个树枝连接,我们可以把它看成一个有根树结构,其中0号节点是根节点。这个树的每个节点上都会有一些樱花,其中第i个节点有c_i朵樱花。樱花树的每一个节点都有最大的载重m,对于每一个节点i,它的儿子节点的个数和i节点上樱花个数之和不能超过m,即son(i) + c_i <= m,其中son(i)表示i的儿子的个数,如果i为叶子节点,则son(i) = 0

现在兔子们觉得樱花树上节点太多,希望去掉一些节点。当一个节点被去掉之后,这个节点上的樱花和它的儿子节点都被连到删掉节点的父节点上。如果父节点也被删除,那么就会继续向上连接,直到第一个没有被删除的节点为止。
现在兔子们希望计算在不违背最大载重的情况下,最多能删除多少节点。
注意根节点不能被删除,被删除的节点不被计入载重。

Input

第一行输入两个正整数,n和m分别表示节点个数和最大载重

第二行n个整数c_i,表示第i个节点上的樱花个数
接下来n行,每行第一个数k_i表示这个节点的儿子个数,接下来k_i个整数表示这个节点儿子的编号

Output

一行一个整数,表示最多能删除多少节点。

Sample Input

10 4
0 2 2 2 4 1 0 4 1 1
3 6 2 3
1 9
1 8
1 1
0
0
2 7 4
0
1 5
0

Sample Output

4

HINT

对于100%的数据,1 <= n <= 2000000, 1 <= m <= 100000, 0 <= c_i <= 1000

数据保证初始时,每个节点樱花数与儿子节点个数之和大于0且不超过m

Source

【分析】

  一个点的权值为sm[i]+w[i],(儿子加权值),删掉这个点,他父节点就增加sm[i]+w[i]-1。

  所以,先把sm[i]+w[i]较小的节点删掉,贪心即可。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 2000010 int m; struct node
{
int x,y,next;
}t[Maxn];
int len,first[Maxn]; int w[Maxn],f[Maxn],nw[Maxn]; void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} void dfs(int x)
{
for(int i=first[x];i;i=t[i].next)
{
int y=t[i].y;
dfs(y);w[x]++;
f[x]+=f[y];
}
int cnt=;
for(int i=first[x];i;i=t[i].next) nw[++cnt]=w[t[i].y];
sort(nw+,nw+cnt+);
for(int i=;i<=cnt;i++) if(w[x]+nw[i]-<=m)
w[x]+=nw[i]-,f[x]++;
else break;
} int main()
{
int n;
scanf("%d%d",&n,&m);
memset(first,,sizeof(first));
for(int i=;i<=n;i++) scanf("%d",&w[i]);
for(int i=;i<=n;i++)
{
int sm;
scanf("%d",&sm);
for(int j=;j<=sm;j++)
{
int x;
scanf("%d",&x);x++;
ins(i,x);
}
}
dfs();
printf("%d\n",f[]);
return ;
}

2017-03-11 18:30:41

【BZOJ 4027】 4027: [HEOI2015]兔子与樱花 (贪心)的更多相关文章

  1. BZOJ 4027: [HEOI2015]兔子与樱花 贪心

    4027: [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号 ...

  2. BZOJ4027: [HEOI2015]兔子与樱花 贪心

    觉得是贪心,但是一开始不太肯定...然后就A了 一个点对它的父亲的贡献就是自己的权值加儿子的个数 #include<bits/stdc++.h> using namespace std; ...

  3. [HEOI2015]兔子与樱花[贪心]

    4027: [HEOI2015]兔子与樱花 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1043  Solved: 598[Submit][Stat ...

  4. 【BZOJ4027】[HEOI2015]兔子与樱花 贪心

    [BZOJ4027][HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组 ...

  5. 洛谷P4107 [HEOI2015]兔子与樱花 [贪心,DFS]

    题目传送门 兔子与樱花 题目描述 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1 ...

  6. BZOJ 4027:[HEOI2015]兔子与樱花(贪心+树形DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4027 [题目大意] 樱花树由n个树枝分叉点组成,编号从0到n-1,这n个分叉点由n-1 ...

  7. P4107 [HEOI2015]兔子与樱花 贪心

    题目描述 传送门 分析 一道贪心题 首先我们可以证明最优的贡献一定是从下依次合并到上的 不会出现一个节点不能合并到父亲节点,却能合并到父亲节点的祖先节点的情况 我们设当前的节点为 \(u\),\(u\ ...

  8. BZOJ 4027: [HEOI2015]兔子与樱花 树上dp

    4027: [HEOI2015]兔子与樱花 Time Limit: 20 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  9. [HEOI2015]兔子与樱花(贪心)

    [HEOI2015]兔子与樱花 Description 很久很久之前,森林里住着一群兔子.有一天,兔子们突然决定要去看樱花.兔子们所在森林里的樱花树很特殊.樱花树由\(n\)个树枝分叉点组成,编号从\ ...

随机推荐

  1. C# 实现java中 wiat/notify机制

    最近在学习java,看到wiat/notify机制实现线程通信,由于平时工作用的C#,赶紧用C#方式实现一个demo. Java 代码: import java.util.ArrayList; imp ...

  2. Web 开发者不可不知的15条编码原则

    HTML 已经走过了近20的发展历程.从HTML4到XHTML,再到最近十分火热的HTML5,它几乎见证了整个互联网的发展.但是,即便到现在,有很多基础的概念和原则依然需要开发者高度注意.下面,向大家 ...

  3. 22、WebDriver

    什么是WebDriver?1.Webdriver(Selenium2)是一种用于Web应用程序的自动测试工具:2.它提供了一套友好的API:3.Webdriver完全就是一套类库,不依赖任何测试框架, ...

  4. 39、请用代码简答实现stack

    栈和队列是两种基本的数据结构,同为容器类型.两者根本的区别在于: stack:后进先出 queue:先进先出 PS:stack和queue是不能通过查询具体某一个位置的元素而进行操作的.但是他们的排列 ...

  5. gitlab使用 —— 多人协同工作(重要技能)

    gitlab使用 —— 多人协同工作(重要技能) 学习链接: http://herry2013git.blog.163.com/blog/static/219568011201341111240751 ...

  6. 前端bootstrap框架禁用响应式的方法

    在Bootstrap中极其重要的一个技术内容便是响应式布局了,一次编码针对不同设备终端的强大能力使得响应式技术愈发流行. 不过正所谓“萝卜青菜各有所爱”,如果你想要使用Bootstrap开发自己的项目 ...

  7. RF, GBDT, XGB区别

    GBDT与XGB区别 1. 传统GBDT以CART作为基分类器,xgboost还支持线性分类器(gblinear),这个时候xgboost相当于带L1和L2正则化项的逻辑斯蒂回归(分类问题)或者线性回 ...

  8. flask插件系列之flask_celery异步任务神器

    现在继续学习在集成的框架中如何使用celery. 在Flask中使用celery 在Flask中集成celery需要做到两点: 创建celery的实例对象的名字必须是flask应用程序app的名字,否 ...

  9. Django框架<一>

    Django框架 Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Sess ...

  10. elasticsearch集群介绍及优化【转】

    elasticsearch用于构建高可用和可扩展的系统.扩展的方式可以是购买更好的服务器(纵向扩展)或者购买更多的服务器(横向扩展),Elasticsearch能从更强大的硬件中获得更好的性能,但是纵 ...