转自:孤影醉残阳

http://hi.baidu.com/siyupy/item/e4bb218fedf4a0864414cfad

随机抽样问题(蓄水池问题Reservoir Sampling)

随即抽样问题:

要求从N个元素中随机的抽取k个元素,其中N无法确定。

是在 《计算机程序设计与艺术》 中看到的这个题目,书中只给出了解法,没给出证明。

解决方法是叫Reservoir Sampling (蓄水池抽样)

Init : a reservoir with the size: k

for i= k+1 to N

M=random(1, i);

if( M < k)

SWAP the Mth value and ith value

end for

证明:

每次都是以 k/i 的概率来选择
例: k=1000的话, 从1001开始作选择,1001被选中的概率是1000/1001,1002被选中的概率是1000/1002,与我们直觉是相符的。

接下来证明:
假设当前是i+1, 按照我们的规定,i+1这个元素被选中的概率是k/i+1,也即第 i+1 这个元素在蓄水池中出现的概率是k/i+1
此时考虑前i个元素,如果前i个元素出现在蓄水池中的概率都是k/i+1的话,说明我们的算法是没有问题的。

对这个问题可以用归纳法来证明:k < i <=N
1.当i=k+1的时候,蓄水池的容量为k,第k+1个元素被选择的概率明显为k/(k+1), 此时前k个元素出现在蓄水池的概率为 k/(k+1), 很明显结论成立。
2.假设当 j=i 的时候结论成立,此时以 k/i 的概率来选择第i个元素,前i-1个元素出现在蓄水池的概率都为k/i。
证明当j=i+1的情况:
即需要证明当以 k/i+1 的概率来选择第i+1个元素的时候,此时任一前i个元素出现在蓄水池的概率都为k/(i+1).
前i个元素出现在蓄水池的概率有2部分组成, ①在第i+1次选择前得出现在蓄水池中,②得保证第i+1次选择的时候不被替换掉
①.由2知道在第i+1次选择前,任一前i个元素出现在蓄水池的概率都为k/i
②.考虑被替换的概率:
首先要被替换得第 i+1 个元素被选中(不然不用替换了)概率为 k/i+1,其次是因为随机替换的池子中k个元素中任意一个,所以不幸被替换的概率是 1/k,故
前i个元素中任一被替换的概率 = k/(i+1) * 1/k = 1/i+1
则没有被替换的概率为: 1 - 1/(i+1) = i/i+1
综合① ②,通过乘法规则
得到前i个元素出现在蓄水池的概率为 k/i * i/(i+1) = k/i+1
故证明成立

随机抽样问题(蓄水池问题Reservoir Sampling)的更多相关文章

  1. 68. 蓄水池抽样(Reservoir Sampling)

    [本文链接] http://www.cnblogs.com/hellogiser/p/reservoir-sampling.html 问题起源于编程珠玑Column 12中的题目10,其描述如下: H ...

  2. Reservoir Sampling 蓄水池采样算法

    https://blog.csdn.net/huagong_adu/article/details/7619665 https://www.jianshu.com/p/63f6cf19923d htt ...

  3. 蓄水池采样算法(Reservoir Sampling)

    蓄水池采样算法 问题描述分析 采样问题经常会被遇到,比如: 从 100000 份调查报告中抽取 1000 份进行统计. 从一本很厚的电话簿中抽取 1000 人进行姓氏统计. 从 Google 搜索 & ...

  4. Reservoir Sampling - 蓄水池抽样

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  5. Reservoir Sampling - 蓄水池抽样问题

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  6. 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)

    蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...

  7. 蓄水池抽样算法 Reservoir Sampling

    2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...

  8. 【数据结构与算法】蓄水池抽样算法(Reservoir Sampling)

    问题描述 给定一个数据流,数据流长度 N 很大,且 N 直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出 m 个不重复的数据. 比较直接的想法是利用随机数算 ...

  9. 算法系列:Reservoir Sampling

    copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...

随机推荐

  1. GOF23设计模式之组合模式(composite)

    一.组合模式概述 将对象组合成树状结构以表示“部分和整体”层次结构,使得客户可以统一的调用叶子对象和容器对象. (1)组合模式的使用场景   把部分和整体的关系用树形结构来表示,从而使客户端可以使用统 ...

  2. Tomcat 8.5 架构分析

    官方文档:Apache Tomcat 8 Architecture 以下分析的是 Version 8.5. Tomcat 组件关系图 根据 Architecture Overview 绘制: Serv ...

  3. Java-Runoob-高级教程:Java 实例

    ylbtech-Java-Runoob-高级教程:Java 实例 1.返回顶部 1. Java 实例 本章节我们将为大家介绍 Java 常用的实例,通过实例学习我们可以更快的掌握 Java 的应用. ...

  4. Centos 7.0 下安装 Zabbix server 3.0服务器的安装及 监控主机的加入(1)

    一.本系列分为6部分 1.Centos 7.0 下安装 Zabbix server 3.0服务器的安装及 监控主机的加入 2.Centos 6.5 下安装 Zabbix server 3.0服务器的安 ...

  5. python开发_python概述

    Python(KK 英语发音:/ˈpaɪθən/,是一种面向对象.直译式计算机程序设计语言, 由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年. Python语法 ...

  6. 20_java之集合Map

    01Map集合概述 A:Map集合概述: 我们通过查看Map接口描述,发现Map接口下的集合与Collection接口下的集合,它们存储数据的形式不同  a:Collection中的集合,元素是孤立 ...

  7. ansible初识二

    一.ansible模块(yum.pip.service.conr.user.group) 上篇中我们已经学了ansible 的几个模块, 接下来再来学习几个, 那么你是否知道ansible 一共有多少 ...

  8. leetcode462

    public class Solution { public int MinMoves2(int[] nums) { var list = nums.OrderBy(x => x).ToList ...

  9. 8.Redis 数据备份与恢复

    转自:http://www.runoob.com/redis/redis-tutorial.html Redis SAVE 命令用于创建当前数据库的备份. 语法 redis Save 命令基本语法如下 ...

  10. Mysql之数据库设计

    一.三大范式 1.第一范式:消除一个字段包含多个数据库值,消除一个记录包含重复的组(单独的一列包含多个项目),即可满足1NF. 2.第二范式:消除部分依赖性即可转化为2NF.部分依赖性表示一个记录中包 ...