随机抽样问题(蓄水池问题Reservoir Sampling)
随即抽样问题:
要求从N个元素中随机的抽取k个元素,其中N无法确定。
是在 《计算机程序设计与艺术》 中看到的这个题目,书中只给出了解法,没给出证明。
解决方法是叫Reservoir Sampling (蓄水池抽样)
Init : a reservoir with the size: k
for i= k+1 to N
M=random(1, i);
if( M < k)
SWAP the Mth value and ith value
end for
证明:
每次都是以 k/i 的概率来选择
例: k=1000的话, 从1001开始作选择,1001被选中的概率是1000/1001,1002被选中的概率是1000/1002,与我们直觉是相符的。
接下来证明:
假设当前是i+1, 按照我们的规定,i+1这个元素被选中的概率是k/i+1,也即第 i+1 这个元素在蓄水池中出现的概率是k/i+1
此时考虑前i个元素,如果前i个元素出现在蓄水池中的概率都是k/i+1的话,说明我们的算法是没有问题的。
对这个问题可以用归纳法来证明:k < i <=N
1.当i=k+1的时候,蓄水池的容量为k,第k+1个元素被选择的概率明显为k/(k+1), 此时前k个元素出现在蓄水池的概率为 k/(k+1), 很明显结论成立。
2.假设当 j=i 的时候结论成立,此时以 k/i 的概率来选择第i个元素,前i-1个元素出现在蓄水池的概率都为k/i。
证明当j=i+1的情况:
即需要证明当以 k/i+1 的概率来选择第i+1个元素的时候,此时任一前i个元素出现在蓄水池的概率都为k/(i+1).
前i个元素出现在蓄水池的概率有2部分组成, ①在第i+1次选择前得出现在蓄水池中,②得保证第i+1次选择的时候不被替换掉
①.由2知道在第i+1次选择前,任一前i个元素出现在蓄水池的概率都为k/i
②.考虑被替换的概率:
首先要被替换得第 i+1 个元素被选中(不然不用替换了)概率为 k/i+1,其次是因为随机替换的池子中k个元素中任意一个,所以不幸被替换的概率是 1/k,故
前i个元素中任一被替换的概率 = k/(i+1) * 1/k = 1/i+1
则没有被替换的概率为: 1 - 1/(i+1) = i/i+1
综合① ②,通过乘法规则
得到前i个元素出现在蓄水池的概率为 k/i * i/(i+1) = k/i+1
故证明成立
随机抽样问题(蓄水池问题Reservoir Sampling)的更多相关文章
- 68. 蓄水池抽样(Reservoir Sampling)
[本文链接] http://www.cnblogs.com/hellogiser/p/reservoir-sampling.html 问题起源于编程珠玑Column 12中的题目10,其描述如下: H ...
- Reservoir Sampling 蓄水池采样算法
https://blog.csdn.net/huagong_adu/article/details/7619665 https://www.jianshu.com/p/63f6cf19923d htt ...
- 蓄水池采样算法(Reservoir Sampling)
蓄水池采样算法 问题描述分析 采样问题经常会被遇到,比如: 从 100000 份调查报告中抽取 1000 份进行统计. 从一本很厚的电话簿中抽取 1000 人进行姓氏统计. 从 Google 搜索 & ...
- Reservoir Sampling - 蓄水池抽样
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...
- Reservoir Sampling - 蓄水池抽样问题
问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...
- 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)
蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...
- 蓄水池抽样算法 Reservoir Sampling
2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...
- 【数据结构与算法】蓄水池抽样算法(Reservoir Sampling)
问题描述 给定一个数据流,数据流长度 N 很大,且 N 直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出 m 个不重复的数据. 比较直接的想法是利用随机数算 ...
- 算法系列:Reservoir Sampling
copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. -- ...
随机推荐
- GOF23设计模式之组合模式(composite)
一.组合模式概述 将对象组合成树状结构以表示“部分和整体”层次结构,使得客户可以统一的调用叶子对象和容器对象. (1)组合模式的使用场景 把部分和整体的关系用树形结构来表示,从而使客户端可以使用统 ...
- Tomcat 8.5 架构分析
官方文档:Apache Tomcat 8 Architecture 以下分析的是 Version 8.5. Tomcat 组件关系图 根据 Architecture Overview 绘制: Serv ...
- Java-Runoob-高级教程:Java 实例
ylbtech-Java-Runoob-高级教程:Java 实例 1.返回顶部 1. Java 实例 本章节我们将为大家介绍 Java 常用的实例,通过实例学习我们可以更快的掌握 Java 的应用. ...
- Centos 7.0 下安装 Zabbix server 3.0服务器的安装及 监控主机的加入(1)
一.本系列分为6部分 1.Centos 7.0 下安装 Zabbix server 3.0服务器的安装及 监控主机的加入 2.Centos 6.5 下安装 Zabbix server 3.0服务器的安 ...
- python开发_python概述
Python(KK 英语发音:/ˈpaɪθən/,是一种面向对象.直译式计算机程序设计语言, 由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年. Python语法 ...
- 20_java之集合Map
01Map集合概述 A:Map集合概述: 我们通过查看Map接口描述,发现Map接口下的集合与Collection接口下的集合,它们存储数据的形式不同 a:Collection中的集合,元素是孤立 ...
- ansible初识二
一.ansible模块(yum.pip.service.conr.user.group) 上篇中我们已经学了ansible 的几个模块, 接下来再来学习几个, 那么你是否知道ansible 一共有多少 ...
- leetcode462
public class Solution { public int MinMoves2(int[] nums) { var list = nums.OrderBy(x => x).ToList ...
- 8.Redis 数据备份与恢复
转自:http://www.runoob.com/redis/redis-tutorial.html Redis SAVE 命令用于创建当前数据库的备份. 语法 redis Save 命令基本语法如下 ...
- Mysql之数据库设计
一.三大范式 1.第一范式:消除一个字段包含多个数据库值,消除一个记录包含重复的组(单独的一列包含多个项目),即可满足1NF. 2.第二范式:消除部分依赖性即可转化为2NF.部分依赖性表示一个记录中包 ...