矩阵快速幂+概率DP poj 3744
/*
POJ 3744 C++ 0ms 184K
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std; struct Matrix
{
double mat[][];
};
Matrix mul(Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
ret.mat[i][j]=;
for(int k=;k<;k++)
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
for(int i=;i<;i++)ret.mat[i][i]=;
Matrix temp=a;
while(n)
{
if(n&)ret=mul(ret,temp);
temp=mul(temp,temp);
n>>=;
}
return ret;
} int x[];
int main()
{
int n;
double p;
while(scanf("%d%lf",&n,&p)!=EOF)//POJ上G++要改为cin输入
{
for(int i=;i<n;i++) scanf("%d",&x[i]);
sort(x,x+n);
double ans=;
Matrix tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Matrix temp; temp=pow_M(tt,x[]-);
ans*=(-temp.mat[][]); for(int i=;i<n;i++){
if(x[i]==x[i-])continue;
temp=pow_M(tt,x[i]-x[i-]-);
ans*=(-temp.mat[][]);
}
printf("%.7lf\n",ans);//POJ上G++要改为%.7f
}
return ;
}
矩阵快速幂+概率DP poj 3744的更多相关文章
- poj 3744 矩阵快速幂+概率dp
题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...
- 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)
题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...
- 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)
传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...
- POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )
题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...
- BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)
考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...
- 【矩阵快速幂优化DP】【校内测试】
实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻. 构建矩阵什么的 ...
- LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】
LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...
- HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】
CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)To ...
- bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...
随机推荐
- 将内裤穿在外面的男人(mysql)
superman 的好处是可以为所欲为,不仅可以修改自己的密码,还能给别人授权,修改别人的密码. 1.修改自己 的密码 首先要先登录mysql, 然后: mysqladmin -u root ...
- 原生js判断设备类型
var u = navigator.userAgent; //Android终端 var isAndroid = u.indexOf('Android') > -1 || u.indexOf(' ...
- SQLyog怎么导入mysql数据库
参考链接:https://jingyan.baidu.com/article/647f0115c5ad9f7f2148a8c6.html
- 2020年,最新NGINX的ngx_http_geoip2模块以精准禁止特定国家或者地区IP访问
1.0 geoip2核心识别库 安装geoip2 lib步骤: cd /usr/local/src .tar.gz wget https://github.com/maxmind/libmaxmind ...
- Wannafly Camp 2020 Day 1A 期望逆序对 - 概率期望
分类讨论即可 #include <bits/stdc++.h> using namespace std; #define int long long const int N = 5005; ...
- 任务调度问题(贪心) hdu4864
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=4864 The company hopes to maximize the number of the t ...
- 164.扩展User模型-继承AbstractUser
继承自AbstractUser: 如果Abstractuser中定义的字段不能够满足你的项目的要求,并且不想要修改原来User对象上的一些字段,只是想要增加一些字段,那么这时候可以直接继承自djang ...
- c# 让接口实现方法
interface IMy { } static class MyFunc { public static void Func<T>(this T obj) where T : IMy { ...
- 理解JWT(JSON Web Token)认证
理解JWT(JSON Web Token)认证 最近想做个小程序,需要用到授权认证流程.以前项目都是用的 OAuth2 认证,但是Sanic 使用OAuth2 不太方便,就想试一下 JWT 的认证方式 ...
- 题解【AcWing275】[NOIP2008]传纸条
题面 首先有一个比较明显的状态设计:设 \(dp_{x1,y1,x2,y2}\) 表示第一条路线走到 \((x1,y1)\) ,第二条路线走到 \((x2,y2)\) 的路径上的数的和的最大值. 这个 ...