题意:在一条不满地雷的路上,你现在的起点在1处。在N个点处布有地雷,1<=N<=10。地雷点的坐标范围:[1,100000000].
每次前进p的概率前进一步,1-p的概率前进1-p步。问顺利通过这条路的概率。就是不要走到有地雷的地方。
 
设dp[i]表示到达i点的概率,则 初始值 dp[1]=1.
很容易想到转移方程: dp[i]=p*dp[i-1]+(1-p)*dp[i-2];
但是由于坐标的范围很大,直接这样求是不行的,而且当中的某些点还存在地雷。
 
N个有地雷的点的坐标为 x[1],x[2],x[3]```````x[N].
我们把道路分成N段:
1~x[1];
x[1]+1~x[2];
x[2]+1~x[3];
`
`
`
x[N-1]+1~x[N].
 
这样每一段只有一个地雷。我们只要求得通过每一段的概率。乘法原理相乘就是答案。
对于每一段,通过该段的概率等于1-踩到该段终点的地雷的概率。
 
就比如第一段 1~x[1].  通过该段其实就相当于是到达x[1]+1点。那么p[x[1]+1]=1-p[x[1]].
但是这个前提是p[1]=1,即起点的概率等于1.对于后面的段我们也是一样的假设,这样就乘起来就是答案了。
 
对于每一段的概率的求法可以通过矩阵乘法快速求出来。

 /*
POJ 3744 C++ 0ms 184K
*/
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
using namespace std; struct Matrix
{
double mat[][];
};
Matrix mul(Matrix a,Matrix b)
{
Matrix ret;
for(int i=;i<;i++)
for(int j=;j<;j++)
{
ret.mat[i][j]=;
for(int k=;k<;k++)
ret.mat[i][j]+=a.mat[i][k]*b.mat[k][j];
}
return ret;
}
Matrix pow_M(Matrix a,int n)
{
Matrix ret;
memset(ret.mat,,sizeof(ret.mat));
for(int i=;i<;i++)ret.mat[i][i]=;
Matrix temp=a;
while(n)
{
if(n&)ret=mul(ret,temp);
temp=mul(temp,temp);
n>>=;
}
return ret;
} int x[];
int main()
{
int n;
double p;
while(scanf("%d%lf",&n,&p)!=EOF)//POJ上G++要改为cin输入
{
for(int i=;i<n;i++) scanf("%d",&x[i]);
sort(x,x+n);
double ans=;
Matrix tt;
tt.mat[][]=p;
tt.mat[][]=-p;
tt.mat[][]=;
tt.mat[][]=;
Matrix temp; temp=pow_M(tt,x[]-);
ans*=(-temp.mat[][]); for(int i=;i<n;i++){
if(x[i]==x[i-])continue;
temp=pow_M(tt,x[i]-x[i-]-);
ans*=(-temp.mat[][]);
}
printf("%.7lf\n",ans);//POJ上G++要改为%.7f
}
return ;
}

矩阵快速幂+概率DP poj 3744的更多相关文章

  1. poj 3744 矩阵快速幂+概率dp

    题目大意: 输入n,代表一位童子兵要穿过一条路,路上有些地方放着n个地雷(1<=n<=10).再输入p,代表这位童子兵非常好玩,走路一蹦一跳的.每次他在 i 位置有 p 的概率走一步到 i ...

  2. 刷题总结—— Scout YYF I(poj3744 矩阵快速幂+概率dp)

    题目: Description YYF is a couragous scout. Now he is on a dangerous mission which is to penetrate int ...

  3. 2018.10.23 bzoj1297: [SCOI2009]迷路(矩阵快速幂优化dp)

    传送门 矩阵快速幂优化dp简单题. 考虑状态转移方程: f[time][u]=∑f[time−1][v]f[time][u]=\sum f[time-1][v]f[time][u]=∑f[time−1 ...

  4. POJ 2778 DNA Sequence ( AC自动机、Trie图、矩阵快速幂、DP )

    题意 : 给出一些病毒串,问你由ATGC构成的长度为 n 且不包含这些病毒串的个数有多少个 分析 : 这题搞了我真特么久啊,首先你需要知道的前置技能包括 AC自动机.构建Trie图.矩阵快速幂,其中矩 ...

  5. BZOJ2553 Beijing2011禁忌(AC自动机+动态规划+矩阵快速幂+概率期望)

    考虑对一个串如何分割能取得最大值.那么这是一个经典的线段覆盖问题,显然每次取右端点尽量靠前的串.于是可以把串放在AC自动机上跑,找到一个合法串后就记录并跳到根. 然后考虑dp.设f[i][j]表示前i ...

  6. 【矩阵快速幂优化DP】【校内测试】

    实际上是水水题叻,先把朴素DP方程写出来,发现$dp[i]$实际上是$dp[i-k]-dp[i-1]$的和,而看数据范围,我们实际上是要快速地求得这段的和,突然就意识到是矩阵快速幂叻. 构建矩阵什么的 ...

  7. LOJ2325. 「清华集训 2017」小 Y 和恐怖的奴隶主【矩阵快速幂优化DP】【倍增优化】

    LINK 思路 首先是考虑怎么设计dp的状态 发现奴隶主的顺序没有影响,只有生命和个数有影响,所以就可以把每个生命值的奴隶主有多少压缩成状态就可以了 然后发现无论是什么时候一个状态到另一个状态的转移都 ...

  8. HDU5411——CRB and Puzzle——————【矩阵快速幂优化dp】

    CRB and Puzzle Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)To ...

  9. bzoj1009 [HNOI2008]GT考试——KMP+矩阵快速幂优化DP

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1009 字符串计数DP问题啊...连题解都看了好多好久才明白,别提自己想出来的蒟蒻我... 首 ...

随机推荐

  1. tensorflow expand_dims和squeeze

    有时我们会碰到升维或降维的需求,比如现在有一个图像样本,形状是 [height, width, channels],我们需要把它输入到已经训练好的模型中做分类,而模型定义的输入变量是一个batch,即 ...

  2. Struts2学习-jsp中超链接传参问题

    今天在学习过程中对struts2中超链接的传参问题产生了一些疑惑,不明白jsp中的超链接如何将参数传到Action方法中去的. <s:iterator value="categorys ...

  3. Notepad++ 个人洁癖

    插件: JSON Viewer 可以以树的形式查看JSON,同时可以格式化JSON,增加缩进. NppExport 可以高亮复制 下载地址: https://github.com/chcg/NPP_E ...

  4. HCTF2018-admin[Unicode欺骗]

    看源码发现 在修改密码,登录,注册时都有都用strlower()来转小写 看了网上师傅的wp,经验之谈,python中自带转小写函数lower(),但这里使用strlower(),可能存在猫腻. 跟进 ...

  5. 虚拟磁盘VHD文件压缩方法

    问题描述 因工作需要在Mac上跑了一个VirtualBox虚拟win7,使用对win系统友好的vhd格式作为虚拟硬盘.经过一段时间使用发现vhd占用空间远大于虚拟磁盘使用量,想办法减减肥才行. 步骤整 ...

  6. Centos7 入门几个操作

    http://www.wallcopper.com/linux/1650.html 创建文件软连接 ln -s 源路径 目标路径 查看软连接ls -il 服务操作:systemctl start fo ...

  7. Python之路Day07

    基础数据类型补充 str s.capitalize() -- 首字母大写 s.title() -- 每个单词首字母大写 s.swapcase() -- 大小写转换 s.center() -- 居中/填 ...

  8. 边捆绑: Content Importance Based Edge Bundling for Graph Visualization

    Problem 当图所要表达的信息较多时, 图中可能会充满交叉的线[1-2], 甚至整个显示空间都被点.线所覆盖, 这时想通过观察来获取图中的重要信息将会变得非常困难, 这种现象称为图的视觉混乱. K ...

  9. sql 单表操作

    前戏 --创建表 create table xxx( id int unsigned not null auto_increment primary key, name varchar(20) not ...

  10. WPF学习笔记五之MVVM

    1.概念 MVVM是Model-View-ViewModel的缩写形式,它通常被用于WPF或Silverlight开发.这三者之间的关系如下图所示 模型(Model) Model——可以理解为带有字段 ...