深度神经网络Google Inception Net-V3结构图

前言

Google Inception Net在2014年的 ImageNet Large Scale Visual Recognition Competition (ILSVRC)中取得第一名,该网络以结构上的创新取胜,通过采用全局平均池化层取代全连接层,极大的降低了参数量,是非常实用的模型,一般称该网络模型为Inception V1。随后的Inception V2中,引入了Batch Normalization方法,加快了训练的收敛速度。在Inception V3模型中,通过将二维卷积层拆分成两个一维卷积层,不仅降低了参数数量,同时减轻了过拟合现象。

一、多少层?

Inception V3究竟有多少层呢?某书籍上说42层,某书籍上说46层。参考实现的源代码,仔细数一数,应该是47层。

 
层次结构图.png

5(前面)+
3(block1_module1)+3(block1_module2)+3(block1_module3)+
3(block2_module1)+5(block2_module2)+5(block2_module3)+5(block2_module4)+5(block2_module5)+
4(block3_module1)+3(block3_module2)+3(block3_module3)
= 47层

Tips:上面的这张层次结构图出现在某些帖子和书籍中,根据实现的源码,标注的红色方框处应该是5个卷积层,而不是4个。

二、详细网络结构

详细的网络结构及其子网络结构如下。

 
总体结构图 .png
 
block1_module1.png
 
block1_module2.png
 
block1_module3.png
 
block2_module1.png
 
block2_module2.png
 
block2_module3,4.png
 
block2_module5.png
 
block3_module1.png
 
block3_module2.png
 
block3_module3.png

这么复杂精巧的网络结构是怎么设计出来的呢?是不断的进行数值实验吗?
还是靠爱... ...

 
 
 
 
 
 

深度神经网络Google Inception Net-V3结构图的更多相关文章

  1. 使用NetworkX模块绘制深度神经网络(DNN)结构图

      本文将展示如何利用Python中的NetworkX模块来绘制深度神经网络(DNN)结构图.   在文章Keras入门(一)搭建深度神经网络(DNN)解决多分类问题中,我们创建的DNN结构图如下: ...

  2. 学习笔记TF032:实现Google Inception Net

    Google Inception Net,ILSVRC 2014比赛第一名.控制计算量.参数量,分类性能非常好.V1,top-5错误率6.67%,22层,15亿次浮点运算,500万参数(AlexNet ...

  3. 深度神经网络(DNN)是否模拟了人类大脑皮层结构?

    原文地址:https://www.zhihu.com/question/59800121/answer/184888043 神经元 在深度学习领域,神经元是最底层的单元,如果用感知机的模型, wx + ...

  4. Keras入门(一)搭建深度神经网络(DNN)解决多分类问题

    Keras介绍   Keras是一个开源的高层神经网络API,由纯Python编写而成,其后端可以基于Tensorflow.Theano.MXNet以及CNTK.Keras 为支持快速实验而生,能够把 ...

  5. 使用python实现深度神经网络 4(转)

    https://blog.csdn.net/oxuzhenyi/article/details/73026807 使用浅层神经网络识别图片中的英文字母 一.实验介绍 1.1 实验内容 本次实验我们正式 ...

  6. [转]kaldi上的深度神经网络

    转:http://blog.csdn.net/wbgxx333/article/details/41019453 深度神经网络已经是语音识别领域最热的话题了.从2010年开始,许多关于深度神经网络的文 ...

  7. AlphaGo论文的译文,用深度神经网络和树搜索征服围棋:Mastering the game of Go with deep neural networks and tree search

    转载请声明 http://blog.csdn.net/u013390476/article/details/50925347 前言: 围棋的英文是 the game of Go,标题翻译为:<用 ...

  8. Batch Normalization原理及其TensorFlow实现——为了减少深度神经网络中的internal covariate shift,论文中提出了Batch Normalization算法,首先是对”每一层“的输入做一个Batch Normalization 变换

    批标准化(Bactch Normalization,BN)是为了克服神经网络加深导致难以训练而诞生的,随着神经网络深度加深,训练起来就会越来越困难,收敛速度回很慢,常常会导致梯度弥散问题(Vanish ...

  9. Google Map API V3开发(1)

    Google Map API V3开发(1) Google Map API V3开发(2) Google Map API V3开发(3) Google Map API V3开发(4) Google M ...

随机推荐

  1. File转换为MultipartFile工具类

    package cn.com.utils; import org.apache.commons.fileupload.FileItem; import org.apache.commons.fileu ...

  2. SPR, subpixel rendering

    参考例子:https://www.grc.com/ctwhat.htm https://en.wikipedia.org/wiki/Subpixel_rendering http://archernz ...

  3. 0704 Process继承实现多进程、Pool进程池,进程间通过队列通信,Pool实现多进程实现复制文件

    通过继承的方式,实现Process多进程 from multiprocessing import Process import time class MyNewProcess(Process): de ...

  4. 在centos 6.9 x64下安装code::blocks步骤

    1.yum groupinstall "Development tools" 2.yum install gtk2* 3.安装wxWidgets 下载地址:https://www. ...

  5. Object 和Throwable

    Object java.lang.Object 所有类的超类 Object里面有的方法所有的类都有 Object方法: String toString() 返回对象的字符串表现形式  类名 + @ + ...

  6. 第三周——重新clone项目、配置并编译

    重新clone项目的原因 因为实习尚未有公司邮箱,使用qq邮箱没有权限提交代码,因此使用晶哥的账号和gitlab, 但是git clone项目默认会关联账号(可能有某些配置项,但是找不到), idea ...

  7. 12-6-上下文this

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  8. amazeUI tab禁止左右滑动(触控操作)

    参考:http://amazeui.clouddeep.cn/javascript/tabs/ 效果: html: <!DOCTYPE html> <html> <hea ...

  9. raw_input和sys.stdin.readline()

    sys.stdin.readline( )会将标准输入全部获取,包括末尾的'\n',因此用len计算长度时是把换行符'\n'算进去了的; raw_input( )获取输入时返回的结果是不包含末尾的换行 ...

  10. visual studio 2017--括号自动补全

    ---恢复内容开始--- 平常在visual studio中编写C++代码,一般括号之类的都是自动补全的,最近想用来编写Python,发现括号不能补全了,很不适应. Python编写时好像括号好像默认 ...