一阶导数与Soble算子

二阶导数与拉普拉斯算子

图像边缘:

Soble算子:

二阶导数:

拉普拉斯算子:

import cv2 as cv
import numpy as np # 图像梯度(由x,y方向上的偏导数和偏移构成),有一阶导数(sobel算子)和二阶导数(Laplace算子)
# 用于求解图像边缘,一阶的极大值,二阶的零点
# 一阶偏导在图像中为一阶差分,再变成算子(即权值)与图像像素值乘积相加,二阶同理
def sobel_demo(image):
grad_x = cv.Sobel(image, cv.CV_32F, 1, 0) # 采用Scharr边缘更突出
grad_y = cv.Sobel(image, cv.CV_32F, 0, 1) gradx = cv.convertScaleAbs(grad_x) # 由于算完的图像有正有负,所以对其取绝对值
grady = cv.convertScaleAbs(grad_y) # 计算两个图像的权值和,dst = src1*alpha + src2*beta + gamma
gradxy = cv.addWeighted(gradx, 0.5, grady, 0.5, 0) cv.imshow("gradx", gradx)
cv.imshow("grady", grady)
cv.imshow("gradient", gradxy) def laplace_demo(image): # 二阶导数,边缘更细
dst = cv.Laplacian(image,cv.CV_32F)
lpls = cv.convertScaleAbs(dst)
cv.imshow("laplace_demo", lpls) def custom_laplace(image):
# 以下算子与上面的Laplace_demo()是一样的,增强采用np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
kernel = np.array([[1, 1, 1], [1, -8, 1], [1, 1, 1]])
dst = cv.filter2D(image, cv.CV_32F, kernel=kernel)
lpls = cv.convertScaleAbs(dst)
cv.imshow("custom_laplace", lpls) def main():
src = cv.imread("../images/lena.jpg")
cv.imshow("lena",src)
# sobel_demo(src)
laplace_demo(src)
custom_laplace(src)
cv.waitKey(0) # 等有键输入或者1000ms后自动将窗口消除,0表示只用键输入结束窗口
cv.destroyAllWindows() # 关闭所有窗口 if __name__ == '__main__':
main()

opencv python:图像梯度的更多相关文章

  1. 12、OpenCV Python 图像梯度

    __author__ = "WSX" import cv2 as cv import numpy as np def lapalian_demo(image): #拉普拉斯算子 # ...

  2. opencv:图像梯度

    常见的图像梯度算子: 一阶导数算子: #include <opencv2/opencv.hpp> #include <iostream> using namespace cv; ...

  3. opencv python 图像二值化/简单阈值化/大津阈值法

    pip install matplotlib 1简单的阈值化 cv2.threshold第一个参数是源图像,它应该是灰度图像. 第二个参数是用于对像素值进行分类的阈值, 第三个参数是maxVal,它表 ...

  4. 11、OpenCV Python 图像金字塔

    __author__ = "WSX" import cv2 as cv import numpy as np # 高斯金字塔 #金字塔 原理 ==> 高斯模糊+ 降采样 #金 ...

  5. 10、OpenCV Python 图像二值化

    __author__ = "WSX" import cv2 as cv import numpy as np #-----------二值化(黑0和白 255)---------- ...

  6. 8、OpenCV Python 图像直方图

    __author__ = "WSX" import cv2 as cv import numpy as np from matplotlib import pyplot as pl ...

  7. 1、OpenCV Python 图像加载和保存

    __author__ = "WSX" import cv2 as cv # 这里的文件是图片或者视频 def Save_File( image ): cv.imwrite(&quo ...

  8. 2、OpenCV Python 图像属性获取

    __author__ = "WSX" import cv2 as cv import numpy as np image = cv.imread("1.JPG" ...

  9. Python+OpenCV图像处理(十二)—— 图像梯度

    简介:图像梯度可以把图像看成二维离散函数,图像梯度其实就是这个二维离散函数的求导. Sobel算子是普通一阶差分,是基于寻找梯度强度.拉普拉斯算子(二阶差分)是基于过零点检测.通过计算梯度,设置阀值, ...

随机推荐

  1. 洛谷P1223 排队接水

    https://www.luogu.org/problem/P1223 #include<bits/stdc++.h> using namespace std; struct st { i ...

  2. [USACO19OPEN]I Would Walk 500 Miles 贪心

    题目 洛谷P5425(点击可跳转) 题目描述 Farmer John想要将他的编号为 \(1 \ldots N\)的 N N 头奶牛( \(N \leq 7500\) )分为非空的 \(K\) 组( ...

  3. New Skateboard

    Max wants to buy a new skateboard. He has calculated the amount of money that is needed to buy a new ...

  4. 在已部署好的docker环境下配置nginx项目路径

    第一步:申请一个docker连接账号,可以借用putty工具,如果使用sublime,可以下载sftp插件,上传.下载来同步你线上线下的文件: 第二步:修改nginx区域配置文件,在conf文件夹里放 ...

  5. C分支语句的工程用法

    if语言中零值比较的注意点: -bool型变量应该直接出现于条件中,不要进行比较 -变量和零值比较时,零值应该出现在比较符号左边 -float型变量不能直接进行零值比较,需要定义精度 bool b = ...

  6. sendmail邮件服务器

    安装sendmail之前 我们要先搭建一个DNS服务器用来解析邮件 下图是配置好的DNS正向解析记录和反向解析记录 正向 反向 DNS配置好之后我们就来安装sendmail服务 然后再安装sendma ...

  7. 第三十篇 玩转数据结构——字典树(Trie)

          1.. Trie通常被称为"字典树"或"前缀树" Trie的形象化描述如下图: Trie的优势和适用场景 2.. 实现Trie 实现Trie的业务无 ...

  8. mybatis(六):设计模式 - 工厂方法模式

  9. 洛谷P1433 吃奶酪

    #include<iostream> #include<math.h> using namespace std ; ; int n; bool st[N]; double x[ ...

  10. 阿里云的maven仓库 地址

    <mirror> <id>nexus-aliyun</id> <mirrorOf>central</mirrorOf> <name&g ...