题目传送门

分析:

我们可以先试着求一下,对于单个学科,有多少种分配方案可以使B神排名为R

对于第i个学科

\(~~~~g(i)=\sum_{j=1}^{H_i}j^{n-R_i}(H_i-j)^{R_i-1}\)

相当于枚举B神本人的分数,然后分别将其他人分配

这个\(H_i\)很大,但是这个函数是一个大约在n次的多项式,拉格朗日插值一下就好了

不会?去百度一下,就是套一个公式2333

然后我们考虑DP

设f[i][j]表示前i个技能后目前碾压了j个人

那么

\(~~~~f[i][j]=\sum_{k=j}^{n-1}f[i-1][k]C_k^jC_{n-k-1}^{R_i-1-k+j}g(i)\)

相当于是在前i-1个技能中碾压的k个人里面选择j个,剩下的n-k-1再选R[i]-1-k+j,一共j个人被碾压

然后大力DP

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
#include<set> #define maxn 105
#define MOD 1000000007 using namespace std; inline int getint()
{
int num=0,flag=1;char c;
while((c=getchar())<'0'||c>'9')if(c=='-')flag=-1;
while(c>='0'&&c<='9')num=num*10+c-48,c=getchar();
return num*flag;
} int n,m;
long long H[maxn],R[maxn];
long long f[maxn][maxn],g[maxn];
long long C[maxn][maxn]; inline long long ksm(long long num,long long k)
{
long long ret=1;
for(;k;k>>=1,num=num*num%MOD)if(k&1)ret=ret*num%MOD;
return ret;
} inline long long lagrange(int x)
{
long long ret=0;
long long tmp[maxn];memset(tmp,0,sizeof tmp);
for(int h=0;h<maxn;h++)for(int i=1;i<=h;i++)
(tmp[h]+=ksm(i,n-R[x])*ksm(h-i,R[x]-1))%=MOD;
for(int i=0;i<maxn;i++)
{
long long num=1;
for(int j=0;j<maxn;j++)if(i!=j)num=num*(H[x]-j)%MOD*ksm((i-j+MOD)%MOD,MOD-2)%MOD;
(ret+=tmp[i]*num)%=MOD;
}
return (ret+MOD)%MOD;
} int main()
{
n=getint(),m=getint();int p=getint();
for(int i=1;i<=m;i++)H[i]=getint();
for(int i=1;i<=m;i++)R[i]=getint();
for(int i=1;i<=m;i++)g[i]=lagrange(i);
for(int i=0;i<maxn;i++)
{
C[i][0]=C[i][i]=1;
for(int j=1;j<i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%MOD;
}
f[0][n-1]=1;
for(int i=1;i<=m;i++)for(int j=0;j<n;j++)for(int k=j;k<n;k++)
if(R[i]-1-k+j>=0&&n-1-k>=R[i]-1-k+j)
(f[i][j]+=f[i-1][k]*C[k][j]%MOD*C[n-k-1][R[i]-1-(k-j)]%MOD*g[i])%=MOD;
printf("%lld\n",f[m][p]);
}

BZOJ4559 成绩比较的更多相关文章

  1. 【BZOJ4559】成绩比较(动态规划,拉格朗日插值)

    [BZOJ4559]成绩比较(动态规划,拉格朗日插值) 题面 BZOJ 洛谷 题解 显然可以每门课顺次考虑, 设\(f[i][j]\)表示前\(i\)门课程\(zsy\)恰好碾压了\(j\)个\(yy ...

  2. 【BZOJ4559】[JLoi2016]成绩比较 动态规划+容斥+组合数学

    [BZOJ4559][JLoi2016]成绩比较 Description G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M-1的整数.一 ...

  3. 【bzoj4559】成绩比较

    Portal -->bzoj4559 补档计划 ​  借这题补个档--拉格朗日插值 ​​  插值的话大概就是有一个\(n-1\)次多项式\(A(x)\),你只知道它在\(n\)处的点值,分别是\ ...

  4. 【BZOJ4559】成绩比较(组合计数,容斥原理)

    题意: G系共有n位同学,M门必修课.这N位同学的编号为0到N-1的整数,其中B神的编号为0号.这M门必修课编号为0到M- 1的整数.一位同学在必修课上可以获得的分数是1到Ui中的一个整数.如果在每门 ...

  5. bzoj4559[JLoi2016]成绩比较 容斥+拉格朗日插值法

    4559: [JLoi2016]成绩比较 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 261  Solved: 165[Submit][Status ...

  6. BZOJ4559: [JLoi2016]成绩比较(dp 拉格朗日插值)

    题意 题目链接 Sol 想不到想不到.. 首先在不考虑每个人的真是成绩的情况下,设\(f[i][j]\)表示考虑了前\(i\)个人,有\(j\)个人被碾压的方案数 转移方程:\[f[i][j] = \ ...

  7. BZOJ4559 JLOI2016成绩比较(容斥原理+组合数学+斯特林数)

    容斥一发改为计算至少碾压k人的情况数量,这样对于每门课就可以分开考虑再相乘了.剩下的问题是给出某人的排名和分数的值域,求方案数.枚举出现了几种不同的分数,再枚举被给出的人的分数排第几,算一个类似斯特林 ...

  8. bzoj千题计划270:bzoj4559: [JLoi2016]成绩比较(拉格朗日插值)

    http://www.lydsy.com/JudgeOnline/problem.php?id=4559 f[i][j] 表示前i门课,有j个人没有被碾压的方案数 g[i] 表示第i门课,满足B神排名 ...

  9. 【bzoj4559】[JLoi2016]成绩比较(dp+拉格朗日插值)

    bzoj 题意: 有\(n\)位同学,\(m\)门课. 一位同学在第\(i\)门课上面获得的分数上限为\(u_i\). 定义同学\(A\)碾压同学\(B\)为每一课\(A\)同学的成绩都不低于\(B\ ...

随机推荐

  1. LightOJ - 1265 Island of Survival (概率dp)

    You are in a reality show, and the show is way too real that they threw into an island. Only two kin ...

  2. IdentityServer4 Clients

    原文地址 Clients 的定义 Client是指那些从 identityserver获取 token的应用 通常需要为client定义下面通用的设置 唯一的client id secret, 如果需 ...

  3. Spring MVC 模拟

    在Spring MVC中,将一个普通的java类标注上Controller注解之后,再将类中的方法使用RequestMapping注解标注,那么这个普通的java类就够处理Web请求,示例代码如下: ...

  4. SpringBoot-Swagger整合zuul智能列表

    SpringBoot-Swagger整合zuul智能列表 简介 可能大家都有用过swagger,可以通过ui页面显示接口信息,快速和前端进行联调. 现在基本都是多模块微服务化,每个服务都有这样的ui页 ...

  5. 关于在vuejs中动态加载不确定数量和内容的组件的解决方案

    在做一个门户项目的时候,客户要求需要进行私人化定制,每个人进入首页的时候可以自定义首页显示的版块 要在4.50个组件中显示随机N个组件按照每个人选定的顺序排列.需求说完了,接下来说说解决方案: htm ...

  6. DOCKER学习_007:Docker的套接字介绍

    根据https://www.cnblogs.com/zyxnhr/p/11825331.html这个文章,已经可以正常安装一个docker服务 查看Docker状态 [root@docker-serv ...

  7. $loj\ 6045$ [雅礼集训 $2017\ Day8$] 价 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 这题还,挺有趣的我$jio$得. 考虑依然先是照着最小割的模子建图呗,然后从意义上来分析,割一条边就相当于不吃一种减肥药/买一种药材.由已知得,买的药材数量 ...

  8. $CH$3801 $Rainbow$的信号 期望+位运算

    正解:位运算 解题报告: 传送门! 其实就是个位运算,,,只是顺便加了个期望的知识点$so$期望的帕并不难来着$QwQ$ 先把期望的皮扒了,就直接分类讨论下,不难发现,答案分为两个部分 $\left\ ...

  9. $Noip2011/Luogu1311$ 选择客栈

    $Luogu$ $Sol$ 暴力十分显然叭.正解不是很好想. 我最开始想维护所有色调的客栈的前缀和后缀,然后每扫到一个最低消费合法的就统计一次答案.但是这样会重复计数,两个合法客栈之间有几个消费合法的 ...

  10. .Net Core Web Api实践(二).net core+Redis+IIS+nginx实现Session共享

    前言:虽说公司app后端使用的是.net core+Redis+docker+k8s部署的,但是微信公众号后端使用的是IIS部署的,虽说公众号并发量不大,但领导还是使用了负载均衡,所以在介绍docke ...