The only difference between easy and hard versions is constraints.

There are nn kids, each of them is reading a unique book. At the end of any day, the ii-th kid will give his book to the pipi-th kid (in case of i=pii=pi the kid will give his book to himself). It is guaranteed that all values of pipi are distinct integers from 11 to nn (i.e. pp is a permutation). The sequence pp doesn't change from day to day, it is fixed.

For example, if n=6n=6 and p=[4,6,1,3,5,2]p=[4,6,1,3,5,2] then at the end of the first day the book of the 11-st kid will belong to the 44-th kid, the 22-nd kid will belong to the 66-th kid and so on. At the end of the second day the book of the 11-st kid will belong to the 33-th kid, the 22-nd kid will belong to the 22-th kid and so on.

Your task is to determine the number of the day the book of the ii-th child is returned back to him for the first time for every ii from 11 to nn.

Consider the following example: p=[5,1,2,4,3]p=[5,1,2,4,3]. The book of the 11-st kid will be passed to the following kids:

  • after the 11-st day it will belong to the 55-th kid,
  • after the 22-nd day it will belong to the 33-rd kid,
  • after the 33-rd day it will belong to the 22-nd kid,
  • after the 44-th day it will belong to the 11-st kid.

So after the fourth day, the book of the first kid will return to its owner. The book of the fourth kid will return to him for the first time after exactly one day.

You have to answer qq independent queries.

Input

The first line of the input contains one integer qq (1≤q≤10001≤q≤1000) — the number of queries. Then qq queries follow.

The first line of the query contains one integer nn (1≤n≤2⋅1051≤n≤2⋅105) — the number of kids in the query. The second line of the query contains nn integers p1,p2,…,pnp1,p2,…,pn (1≤pi≤n1≤pi≤n, all pipi are distinct, i.e. pp is a permutation), where pipi is the kid which will get the book of the ii-th kid.

It is guaranteed that ∑n≤2⋅105∑n≤2⋅105 (sum of nn over all queries does not exceed 2⋅1052⋅105).

Output

For each query, print the answer on it: nn integers a1,a2,…,ana1,a2,…,an, where aiai is the number of the day the book of the ii-th child is returned back to him for the first time in this query.

Example
input

Copy
6
5
1 2 3 4 5
3
2 3 1
6
4 6 2 1 5 3
1
1
4
3 4 1 2
5
5 1 2 4 3
output

Copy
1 1 1 1 1
3 3 3
2 3 3 2 1 3
1
2 2 2 2
4 4 4 1 4


#include <iostream>
#include <vector>
#include <algorithm>
#include <string>
#include <set>
#include <queue>
#include <map>
#include <sstream>
#include <cstdio>
#include <cstring>
#include <numeric>
#include <cmath>
#include <unordered_set>
#include <unordered_map>
#define ll long long
using namespace std;
int dir[][] = { {,},{,-},{-,},{,} };
vector<int> p,help,res;
int cnt;
void dfs(int start, int pos)
{
help.push_back(pos);
cnt++;
int t = p[pos];
p[pos] = ;
if (start == t)
return;
dfs(start, t);
} int main()
{
int q;
cin >> q;
while (q--)
{
int n;
cin >> n;
p.resize(n+);
res.resize(n + ); for (int i = ; i <= n; i++)
cin >> p[i];
for (int i = ; i <= n; i++)
{
help.clear();
cnt = ;
if (p[i] == )
continue;
dfs(i, i);
for (int j = ; j < help.size(); j++)
{
res[help[j]] = cnt;
}
}
for (int i = ; i < res.size(); i++)
cout << res[i] << " ";
cout << endl;
}
//system("pause");
return ;
}

Books Exchange (hard version)的更多相关文章

  1. CodeForces - 1214D B2. Books Exchange (hard version)

    题目链接:http://codeforces.com/problemset/problem/1249/B2 思路:用并查集模拟链表,把关系串联起来,如果成环,则满足题意.之后再用并查集合并一个链,一个 ...

  2. Books Exchange (easy version)   CodeForces - 1249B2

    The only difference between easy and hard versions is constraints. There are nn kids, each of them i ...

  3. Codeforces--Books Exchange (hard version)

    题目链接http://codeforces.com/contest/1249/problem/B2 .并查集思想,将数分成多个集合,每个集合的大小就是一轮的所需天数. Map[i]存储数据. flag ...

  4. cf 595 补题

    1.B2   Books Exchange (hard version) 题意:有n(1~n)个孩子看书,定义一个数组,记录了每个孩子看完

  5. Codeforces Round #595 (Div. 3)

    A - Yet Another Dividing into Teams 题意:n个不同数,分尽可能少的组,要求组内没有两个人的差恰为1. 题解:奇偶分组. int a[200005]; void te ...

  6. dfs(找环)

    https://codeforces.com/problemset/problem/1249/B2 B2. Books Exchange (hard version) time limit per t ...

  7. CodeForces1249B1/B2-Books Exchange-dfs-一般搜索+记忆化搜索

    一般搜索 注意:一般定义成void Books Exchange (easy version)  CodeForces - 1249B2 The only difference between eas ...

  8. Financial Information Exchange (FIX) Protocol Interview Questions Answers[z]

    What do you mean by Warrant?Warrant is a financial product which gives right to holder to Buy or Sel ...

  9. CF-595

    题目传送门 A .Yet Another Dividing into Teams sol:原先是用比较复杂的方法来解的,后来学弟看了一眼,发现不是1就是2,当出现两个人水平相差为1就分成两组,1组全是 ...

随机推荐

  1. python list comprehensions

    list comprehensions 列表解释 You now have all the knowledge necessary to begin writing list comprehensio ...

  2. 知乎-如何rebuttal

    作者:魏秀参链接:https://zhuanlan.zhihu.com/p/104298923来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 学术论文是发布自己或团队最 ...

  3. PAT (Advanced Level) Practice 1055 The World's Richest (25 分) (结构体排序)

    Forbes magazine publishes every year its list of billionaires based on the annual ranking of the wor ...

  4. GNU Radio无线通信嗅探基础

    文章内容简介 1.使用哪些grc模块完成我们的嗅探工作 2.如何选择参数以获取最完美的波形 3.如何从波形还原回数据 我接下来会使用电视棒(RTL-SDR)嗅探一个固定码遥控锁开发组件. 我使用如下的 ...

  5. vue之项目打包部署到服务器

    这是今年的第一篇博客.整理一下vue如何从项目打包到部署服务器,给大家做下分享,希望能给大家带来或多或少的帮助,喜欢的大佬们可以给个小赞,如果有问题也可以一起讨论下. 第一步:这是很关键的一步.打开项 ...

  6. 为什么 MySQL 使用 B+ 树

    为什么 MySQL 使用 B+ 树是面试中经常会出现的问题,很多人对于这个问题可能都有一些自己的理解,但是多数的回答都不够完整和准确,大多数人都只会简单说一下 B+ 树和 B 树的区别,但是都没有真正 ...

  7. java学习笔记之反射—反射和工厂模式

    简单工厂模式又称为静态工厂方法模式,它是由工厂对象来决定要创建哪一种类的实例化对象. 静态工厂代码: class Factory{ private Factory() {} public static ...

  8. 【转】IEnumerable接口的一个简单示例

    转:https://blog.csdn.net/wang371756299/article/details/8197075 摘要: IEnumerable接口是实现foreach循环的一个重要的接口, ...

  9. How to Install Oracle Java 11 on Ubuntu 18.04 LTS (Bionic) Written by Rahul, Updated on April 3, 20

    本文系转载备份 请阅读点击下面链接阅读原文以获取更佳地阅读体验.谢谢. How to Install Oracle Java 11 on Ubuntu 18.04 LTS (Bionic) Writt ...

  10. 对主定理(Master Theorem)的理解

    前言 虽说在学OI的时候学到了非常多的有递归结构的算法或方法,也很清楚他们的复杂度,但更多时候只是能够大概脑补这些方法为什么是这个复杂度,而从未从定理的角度去严格证明他们.因此借着这个机会把主定理整个 ...