题意:

有$Q$次询问,每次给定$X_i$和$Y_i$,求对于$1\leq x \leq X_i , 1 \leq y \leq Y_i$,$(x,y)$进行辗转相除法的步数的最大值以及取到最大值的方案数。

步数定义如下:
$(a,b)$和$(b,a)$步数相同;
$(0,a)$步数为0;
如果$a \leq b$,$(a,b)$的步数为$(b \% a,a)$的步数+1。

$Q \leq 3*10^5 , X_i,Y_i \leq 10^{18}$。

这种题我一看就懵了,明显要推什么结论,但是我怎么才能想到这和斐波那契数列有关呢?

atcoder的官方题解挂了,耗费了我2h去思考自己是英语太撇了还是太弱了

我们定义$f(a,b)$为$(a,b)$辗转相除的步数。对于斐波那契数列,我们规定$F[0]=F[1]=1$

首先,我们可以用归纳法证明结论,$f(F[i],F[i+1])=i$,并且如果有$f(x,y)=i \ (x<y)$,那么$x \geq F[i] , y \geq F[i+1]$

定义一个数对$(x,y)$是好的,当且仅当不存在$x'<x , y'<y$的$(x',y')$满足 $f(x',y')>f(x,y)$,我们发现只有好的数对才对答案有贡献

定义一个数对$(x,y)$是优秀的,若$f(x,y)=k$,那么$x,y \leq F[k+2]+F[k-1]$

我们可以得到一个结论:好的数对$(x,y)$经过一次辗转相除之后,一定得到一个优秀的数对

用反证法证明这个结论,对于一个数对$(x,y)$,$f(x,y)=k$,令$x<y$,若$y>F[k+2]+F[k-1]$:

因为$f(x,y)=k$,所以$x \geq F[k]$

所以如果一个好的数对$(a,b)=(y,py+x) , f(a,b)=k+1$,辗转相除之后得到$(x,y)$,那么

$a=y > F[k+2] , b=py+x \geq y+x > F[k+2]+F[k-1]+F[k] = F[k+3]$

所以存在$x'=F[k+2],y'=F[k+3]$,满足$f(x',y')>f(a,b)$。

然后我们可以用递推的思路,根据$f(x,y)=k$的优秀数对推出$f(x,y)=k+1$的优秀数对

优秀的数对并不多,而且每次推的时候只会多那么一两个的样子,所以可以直接预处理。

最后再根据优秀数对来算好的数对的数量就可以了。

//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
#define ll long long
#define db double
#define For(i,a,b) for(int i=(a);i<=(b);++i)
#define Rep(i,a,b) for(int i=(a);i>=(b);--i)
const int maxn=100+7,W=90;
const ll mod=1e9+7;
ll Td,n,m,ans,sum,f[maxn]; char cc;ll ff;
template<typename T>void read(T& aa) {
aa=0;ff=1; cc=getchar();
while(cc!='-'&&(cc<'0'||cc>'9')) cc=getchar();
if(cc=='-') ff=-1,cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
aa*=ff;
} struct Node{
ll x,y;
Node(){}
Node(ll x,ll y):x(x),y(y){}
}o;
vector<Node> G[maxn]; int main() {
ll x,y,s; f[0]=f[1]=1;
For(i,2,W) f[i]=f[i-1]+f[i-2];
G[1].push_back(Node(1,2)); G[1].push_back(Node(1,3));
G[1].push_back(Node(1,4));
For(i,1,W-3) {
s=G[i].size();
For(j,0,s-1) {
o=G[i][j]; x=o.y; y=o.x+x;
while(y<=f[i+3]+f[i]) {
G[i+1].push_back(Node(x,y));
y+=x;
}
}
} read(Td);
while(Td--) {
read(n); read(m);
if(n>m) swap(n,m);
for(ans=1;f[ans+1]<=n&&f[ans+2]<=m;++ans) ;
printf("%lld ",ans);
if(ans==1) {
printf("%lld\n",n*m%mod);
continue;
}
s=G[ans-1].size(); sum=0;
For(i,0,s-1) {
o=G[ans-1][i]; x=o.x; y=o.y;
if(y<=n) sum+=(m-x)/y%mod;
if(y<=m) sum+=(n-x)/y%mod;
sum%=mod;
}
printf("%lld\n",sum);
}
return 0;
}

agc015F Kenus the Ancient Greek的更多相关文章

  1. agc015F - Kenus the Ancient Greek(结论题)

    题意 题目链接 $Q$组询问,每次给出$[x, y]$,定义$f(x, y)$为计算$(x, y)$的最大公约数需要的步数,设$i \leqslant x, j \leqslant y$,求$max( ...

  2. [AT2384] [agc015_f] Kenus the Ancient Greek

    题目链接 AtCoder:https://agc015.contest.atcoder.jp/tasks/agc015_f 洛谷:https://www.luogu.org/problemnew/sh ...

  3. Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)

    洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...

  4. Atcoder训练计划

    争取三天做完一套吧,太简单的就写一句话题解吧(其实也没多少会做的). 自己做出来的在前面用*标记 agc007 *A - Shik and Stone 暴力dfs即可,直接判断个数 *B - Cons ...

  5. A&G¥C015

    A&G¥C015 A A+...+B Problem 正常A+B我还是会的,但是又加了个省略号就不会了/kk B Evilator 不会 C Nuske vs Phantom Thnook 以 ...

  6. POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]

    Atlantis Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 21734   Accepted: 8179 Descrip ...

  7. 20151207Study

    Liberal lawmakers proposed a bill to reduce the cost of medicine for older Americans.自由主义立法者提出一条减少老年 ...

  8. hdu 1542 & & poj 1151

    Atlantis Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total S ...

  9. [POJ1151]Atlantis

    [POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...

随机推荐

  1. PAT甲级——A1081 Rational Sum

    Given N rational numbers in the form numerator/denominator, you are supposed to calculate their sum. ...

  2. Axure教程:如何使用动态面板?动态面板功能详解

    写了几个Axure教程之后发现,可能教程的起点有些高了,过分的去讲效果的实现,而忽略了axure功能以及基础元件的使用,那么从这个教程开始,把这些逐渐的展开讲解. 关于Axure动态面板 动态面板是a ...

  3. (Eclipse) 安装Subversion1.82(SVN)插件

    简介    :SVN是团队开发的代码管理工具,它使我们得以进行多人在同一平台之下的团队开发. 解决问题:Eclipse下的的SVN插件安装. 学到    :Eclipse下的的SVN插件安装. 资源地 ...

  4. Activiti的helloworld

    所有语言的第一个程序都叫helloworld,姑且也称这第一个activiti程序为helloworld. 一个工作流想要实现,必定有一个对应的部署文件,利用流程设计器设计一个简单的流程,请假-> ...

  5. bzoj1003物流运输 最短路+DP

    bzoj1003物流运输 题目描述 物流公司要把一批货物从码头A运到码头B.由于货物量比较大,需要n天才能运完.货物运输过程中一般要转停好几个码头.物流公司通常会设计一条固定的运输路线,以便对整个运输 ...

  6. html2canvas JS截图插件

    github/download:https://github.com/niklasvh/html2canvas/releases 参考文章:基于html2canvas实现网页保存为图片及图片清晰度优化 ...

  7. python-pygame安装教程

    网上有很多关于python,pygame的安装教程.大都比较麻烦,下面为大家介绍一种非常简单的安装方法.(因为安装大都是新手教程写详细一些) python是32位 python是3.6 1 pip配置 ...

  8. 关于mapreduce 开发环境部署和jar包拷贝问题

    1.mapreduce开发应当在linux里面的eclipse不然容易出现问题. 2.把eclipse拷贝到linux环境中,然后需要拷贝hadoop-eclipse-plugin-2.3.0.jar ...

  9. LeetCode412Fizz Buzz

    写一个程序,输出从 1 到 n 数字的字符串表示. 1. 如果 n 是3的倍数,输出"Fizz": 2. 如果 n 是5的倍数,输出"Buzz": 3.如果 n ...

  10. [Array]122. Best Time to Buy and Sell Stock II(obscure)

    Say you have an array for which the ith element is the price of a given stock on day i. Design an al ...