agc015F Kenus the Ancient Greek
题意:
有$Q$次询问,每次给定$X_i$和$Y_i$,求对于$1\leq x \leq X_i , 1 \leq y \leq Y_i$,$(x,y)$进行辗转相除法的步数的最大值以及取到最大值的方案数。
步数定义如下:
$(a,b)$和$(b,a)$步数相同;
$(0,a)$步数为0;
如果$a \leq b$,$(a,b)$的步数为$(b \% a,a)$的步数+1。
$Q \leq 3*10^5 , X_i,Y_i \leq 10^{18}$。
这种题我一看就懵了,明显要推什么结论,但是我怎么才能想到这和斐波那契数列有关呢?
atcoder的官方题解挂了,耗费了我2h去思考自己是英语太撇了还是太弱了
我们定义$f(a,b)$为$(a,b)$辗转相除的步数。对于斐波那契数列,我们规定$F[0]=F[1]=1$
首先,我们可以用归纳法证明结论,$f(F[i],F[i+1])=i$,并且如果有$f(x,y)=i \ (x<y)$,那么$x \geq F[i] , y \geq F[i+1]$
定义一个数对$(x,y)$是好的,当且仅当不存在$x'<x , y'<y$的$(x',y')$满足 $f(x',y')>f(x,y)$,我们发现只有好的数对才对答案有贡献
定义一个数对$(x,y)$是优秀的,若$f(x,y)=k$,那么$x,y \leq F[k+2]+F[k-1]$
我们可以得到一个结论:好的数对$(x,y)$经过一次辗转相除之后,一定得到一个优秀的数对
用反证法证明这个结论,对于一个数对$(x,y)$,$f(x,y)=k$,令$x<y$,若$y>F[k+2]+F[k-1]$:
因为$f(x,y)=k$,所以$x \geq F[k]$
所以如果一个好的数对$(a,b)=(y,py+x) , f(a,b)=k+1$,辗转相除之后得到$(x,y)$,那么
$a=y > F[k+2] , b=py+x \geq y+x > F[k+2]+F[k-1]+F[k] = F[k+3]$
所以存在$x'=F[k+2],y'=F[k+3]$,满足$f(x',y')>f(a,b)$。
然后我们可以用递推的思路,根据$f(x,y)=k$的优秀数对推出$f(x,y)=k+1$的优秀数对
优秀的数对并不多,而且每次推的时候只会多那么一两个的样子,所以可以直接预处理。
最后再根据优秀数对来算好的数对的数量就可以了。
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<vector>
using namespace std;
#define ll long long
#define db double
#define For(i,a,b) for(int i=(a);i<=(b);++i)
#define Rep(i,a,b) for(int i=(a);i>=(b);--i)
const int maxn=100+7,W=90;
const ll mod=1e9+7;
ll Td,n,m,ans,sum,f[maxn]; char cc;ll ff;
template<typename T>void read(T& aa) {
aa=0;ff=1; cc=getchar();
while(cc!='-'&&(cc<'0'||cc>'9')) cc=getchar();
if(cc=='-') ff=-1,cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
aa*=ff;
} struct Node{
ll x,y;
Node(){}
Node(ll x,ll y):x(x),y(y){}
}o;
vector<Node> G[maxn]; int main() {
ll x,y,s; f[0]=f[1]=1;
For(i,2,W) f[i]=f[i-1]+f[i-2];
G[1].push_back(Node(1,2)); G[1].push_back(Node(1,3));
G[1].push_back(Node(1,4));
For(i,1,W-3) {
s=G[i].size();
For(j,0,s-1) {
o=G[i][j]; x=o.y; y=o.x+x;
while(y<=f[i+3]+f[i]) {
G[i+1].push_back(Node(x,y));
y+=x;
}
}
} read(Td);
while(Td--) {
read(n); read(m);
if(n>m) swap(n,m);
for(ans=1;f[ans+1]<=n&&f[ans+2]<=m;++ans) ;
printf("%lld ",ans);
if(ans==1) {
printf("%lld\n",n*m%mod);
continue;
}
s=G[ans-1].size(); sum=0;
For(i,0,s-1) {
o=G[ans-1][i]; x=o.x; y=o.y;
if(y<=n) sum+=(m-x)/y%mod;
if(y<=m) sum+=(n-x)/y%mod;
sum%=mod;
}
printf("%lld\n",sum);
}
return 0;
}
agc015F Kenus the Ancient Greek的更多相关文章
- agc015F - Kenus the Ancient Greek(结论题)
题意 题目链接 $Q$组询问,每次给出$[x, y]$,定义$f(x, y)$为计算$(x, y)$的最大公约数需要的步数,设$i \leqslant x, j \leqslant y$,求$max( ...
- [AT2384] [agc015_f] Kenus the Ancient Greek
题目链接 AtCoder:https://agc015.contest.atcoder.jp/tasks/agc015_f 洛谷:https://www.luogu.org/problemnew/sh ...
- Atcoder Grand Contest 015 F - Kenus the Ancient Greek(找性质+乱搞)
洛谷题面传送门 & Atcoder 题面传送门 一道难度 Au 的 AGC F,虽然看过题解之后感觉并不复杂,但放在现场确实挺有挑战性的. 首先第一问很简单,只要每次尽量让"辗转相除 ...
- Atcoder训练计划
争取三天做完一套吧,太简单的就写一句话题解吧(其实也没多少会做的). 自己做出来的在前面用*标记 agc007 *A - Shik and Stone 暴力dfs即可,直接判断个数 *B - Cons ...
- A&G¥C015
A&G¥C015 A A+...+B Problem 正常A+B我还是会的,但是又加了个省略号就不会了/kk B Evilator 不会 C Nuske vs Phantom Thnook 以 ...
- POJ1151Atlantis 矩形面积并[线段树 离散化 扫描线]
Atlantis Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 21734 Accepted: 8179 Descrip ...
- 20151207Study
Liberal lawmakers proposed a bill to reduce the cost of medicine for older Americans.自由主义立法者提出一条减少老年 ...
- hdu 1542 & & poj 1151
Atlantis Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total S ...
- [POJ1151]Atlantis
[POJ1151]Atlantis 试题描述 There are several ancient Greek texts that contain descriptions of the fabled ...
随机推荐
- C++写矩阵的转置
(2019年2月19日注:这篇文章原先发在自己github那边的博客,时间是2017年2月5日) 对于任意非n阶矩阵的转置,用c++应该怎么写代码,思考了一下,发现并没有那么简单,上网找到了一个比较好 ...
- PAT甲级——A1102 Invert a Binary Tree
The following is from Max Howell @twitter: Google: 90% of our engineers use the software you wrote ( ...
- Django自带的认证系统
Django自带的用户认证 我们在开发一个网站的时候,无可避免的需要设计实现网站的用户系统.此时我们需要实现包括用户注册.用户登录.用户认证.注销.修改密码等功能,这还真是个麻烦的事情呢. Djang ...
- 04_Spring AOP两种代理方法
什么是AOP? AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是O ...
- Luogu P1401 城市(二分+网络流)
P1401 城市 题意 题目描述 N(2<=n<=200)个城市,M(1<=m<=40000)条无向边,你要找T(1<=T<=200)条从城市1到城市N的路,使得最 ...
- php 支付宝新版本app支付以及回调
;支付宝快速接入; 支付宝2017年新版本支付基本业务逻辑 服务端生成字符串 交给客户端, 客户端调用接口,将这段字符串str传过去 调用起支付界面. 其中字符串str包含了所有请求参数,以及请求参数 ...
- Ionic 发送Http post PHP 获取不到数据
1.app.js 配置请求设置 $httpProvider.defaults.headers.post={ 'Content-Type':'application/x-www-form-urlenco ...
- xshell添加脚本
##### xshell添加脚本```属性连接 - 用户身份验证 - 登陆脚本 - 添加等待:[usmshell]$发送:open 212 //212是指188那台机器的ID再添加一个等待:passw ...
- 移动端iPhone系列适配问题
问题一:苹果手机上的input按钮自带渐变效果 一样的代码,为啥在苹果手机上的input按钮就自带渐变效果,搞特殊吗?怎么让它显示正常?只需要加上outline:0px; -webkit-appear ...
- switch的练习
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...