1.1.1. 慢查询日志
当查询超过一定的时间没有返回结果的时候,才会记录到慢查询日志中。默认不开启。
采样的时候手工开启。可以帮助我们找出执行慢的 SQL 语句
查看慢 SQL 日志是否启用(on 表示启用):
show variables like 'slow_query_log';
查看执行慢于多少秒的 SQL 会记录到日志文件中
show variables like 'long_query_time';
可以使用模糊搜索,查看所有含有 query 的变量信息
show variables like '%query%';

1.1.2. 修改 l mysql 配置参数
my.ini(Linux 下文件名为 my.cnf),查找到[mysqld]区段,增加日志的配置。
Windows 下路径一般为 C:\ProgramData\MySQL\MySQL Server 5.7\my.ini",可以在
启动参数中查看使用的是那个配置文件。

常用的参数详解:
#--是否开启慢查询日志
slow_query_log=1
# --指定保存路径及文件名,默认为数据文件目录,
slow_query_log_file="bxg_mysql_slow.log"
# --指定多少秒返回查询的结果为慢查询
long_query_time=1
# --记录所有没有使用到索引的查询语句
log_queries_not_using_indexes=1
#--记录那些由于查找了多于 1000 次而引发的慢查询
min_examined_row_limit=1000
# --记录那些慢的 optimize table,analyze table 和 alter table 语句
log_slow_admin_statements=1
#--记录由 Slave 所产生的慢查询
log_slow_slave_statements=1

datadir=C:/ProgramData/MySQL/MySQL Server 5.7\Data --数据文件目录
注意:修改以下参数,需要重新启动数据库服务才会生效。

1.1.3. 命令行修改慢查询配置
命令行修改配置方式不需要不重启即可生效,但重启之后会自动失效。
set global slow_query_log=1;
set global slow_query_log_file='bxg_mysql_slow.log';
set long_query_time=1;
set global log_queries_not_using_indexes=1;
set global min_examined_row_limit=1000;
set global log_slow_admin_statements=1;
set global log_slow_slave_statements=1;
其他参数可通过以下命令查阅:
show variables like '%query%';
show variables like '%slow%';

1.1.4. 慢日志格式

时间、主机信息、执行信息、执行时间、执行内容

1.1.5. 查询缓存
Query Cache 会缓存 select 查询,安装时默认是开启的,但是如果对表进行 INSERT,
UPDATE, DELETE, TRUNCATE, ALTER TABLE, DROP TABLE, or DROP DATABASE 等操作
时,之前的缓存会无效并且删除。这样一定程度上也会影响我们数据库的性能。所以对一
些频繁的变动表的情况开启缓存是不明智的。还有一种情况我们测试数据库性能的时候也
要关闭缓存,避免缓存对我们测试数据的影响。
show VARIABLES like '%cache%';

查看缓存命中情况
select count(*) FROM test;
select count(*) FROM test;
show status like '%qcache%';

关闭缓存有两种放法,一种临时的,一种永久的。临时的直接在命令行执行
set global query_cache_size=0;

set global query_cache_type=0; --如果配置文件中为关闭缓存的话,不能通过命令开启缓存
永久的修改配置文件 my.cnf ,添加下面的配置即可。
query_cache_type=0
query_cache_size=0
另外,我们还可以通过 sql_no_cache 关键字在 sql 语句中直接禁用缓存,在开启缓存
的情况下我们对 sql 语句做一些改动
Select sql_no_cache count(*) from pythonlearn.lianjia; -- 不缓存
Select sql_cache count(*) from pythonlearn.lianjia; -- 缓存(也可以不加,默认缓存已经开启了)

1.1.6. 准备测试数据
创建测试表

-- 用户表
CREATE TABLE `person` (
`id` bigint(20) unsigned NOT NULL,
`fname` varchar(100) NOT NULL,
`lname` varchar(100) NOT NULL,
`age` tinyint(3) unsigned NOT NULL,
`sex` tinyint(1) unsigned NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8
--用户部门表
CREATE TABLE `department` (
`id` bigint(20) unsigned NOT NULL,
`department` varchar(100) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8
-- 用户住址表
CREATE TABLE `address` (
`id` bigint(20) unsigned NOT NULL,
`address` varchar(100) NOT NULL,
PRIMARY KEY (`id`)
) ENGINE=INNODB DEFAULT CHARSET=utf8

创建存储过程,用于批量添加测试数据
delimiter $$
drop procedure if exists generate;
CREATE DEFINER=`root`@`localhost` PROCEDURE `generate`(IN num INT)
BEGIN

DECLARE chars VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789';
DECLARE fname VARCHAR(10) DEFAULT '';
DECLARE lname VARCHAR(25) DEFAULT '';
DECLARE id int UNSIGNED;
DECLARE len int;
set id=1;
DELETE from person;
WHILE id <= num DO
set len = FLOOR(1 + RAND()*10);
set fname = '';
WHILE len > 0 DO
SET fname = CONCAT(fname,substring(chars,FLOOR(1 + RAND()*62),1));
SET len = len - 1;
END WHILE;
set len = FLOOR(1+RAND()*25);
set lname = '';
WHILE len > 0 DO
SET lname = CONCAT(lname,SUBSTR(chars,FLOOR(1 + RAND()*62),1));
SET len = len - 1;
END WHILE;
INSERT into person VALUES (id,fname,lname, FLOOR(RAND()*100),
FLOOR(RAND()*2));
set id = id + 1;
END WHILE;
END $$
delimiter $$
drop procedure if exists genDepAdd;
CREATE DEFINER=`root`@`localhost` PROCEDURE `genDepAdd`(IN num INT)
BEGIN
DECLARE chars VARCHAR(100) DEFAULT '行政技术研发财务人事开发公关推广营销咨询客服
运营测试';
DECLARE chars2 VARCHAR(100) DEFAULT '北京上海青岛重庆成都安徽福建浙江杭州深圳温
州内蒙古天津河北西安三期';
DECLARE depart VARCHAR(10) DEFAULT '';
DECLARE address VARCHAR(25) DEFAULT '';
DECLARE id int UNSIGNED;
DECLARE len int;
set id=1;
WHILE id <= num DO
set len = FLOOR(2 + RAND()*2);
set depart = '';
WHILE len > 0 DO
SET depart = CONCAT(depart,substring(chars,FLOOR(1 + RAND()*26),1));
SET len = len - 1;
END WHILE;
set depart=CONCAT(depart,'部');
set len = FLOOR(6+RAND()*18);
set address = '';
WHILE len > 0 DO
SET address = CONCAT(address,SUBSTR(chars2,FLOOR(1 + RAND()*33),1));
SET len = len - 1;
END WHILE;
INSERT into department VALUES (id,depart);
INSERT into address VALUES (id,address);
set id = id + 1;
END WHILE;
END $$
为了提高速度,可以暂停事务。测试添加 100 万随机数据,大概 600s 左右时间。
-- 停掉事务
set autocommit = 0;
-- 调用存储过程
call generate(1000000);
-- call genDepAdd(1000000);
-- 重启事务
set autocommit = 1;

对比 MyIsam:当创建表时选择 MyIsam 格式,插入数据会很慢,仅仅 3000 条数据就
需要 2 分钟的时间,由此可见 MyIsam 和 InnoDB 的差距还是很大的。另外在执行过程中可以发现 MyIsam 插入的数据可以在表中实时看到,而 InnoDB 做了事务最终一次提交,
所以数据不能实时看到,只有存储过程全部执行完成后才可以看到数据

未完待续

MySQL数据库优化(一)的更多相关文章

  1. 关于MySQL数据库优化的部分整理

    在之前我写过一篇关于这个方面的文章 <[原创]为什么使用数据索引能提高效率?(本文针对mysql进行概述)(更新)> 这次,主要侧重点讲下两种常用存储引擎. 我们一般从两个方面进行MySQ ...

  2. 【MySQL】花10分钟阅读下MySQL数据库优化总结

    1.花10分钟阅读下MySQL数据库优化总结http://www.kuqin.com2.扩展阅读:数据库三范式http://www.cnblogs.com3.my.ini--->C:\Progr ...

  3. 30多条mysql数据库优化方法,千万级数据库记录查询轻松解决(转载)

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  4. 50多条mysql数据库优化建议

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 缺省情况下建立的索引是非群集索引,但有时它并不是最佳的.在非群集索引下,数据在物理上随机存 ...

  5. 解开发者之痛:中国移动MySQL数据库优化最佳实践(转)

    开源数据库MySQL比较容易碰到性能瓶颈,为此经常需要对MySQL数据库进行优化,而MySQL数据库优化需要运维DBA与相关开发共同参与,其中MySQL参数及服务器配置优化主要由运维DBA完成,开发则 ...

  6. 30多条mysql数据库优化方法【转】

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索 ...

  7. 百万行mysql数据库优化和10G大文件上传方案

    百万行mysql数据库优化和10G大文件上传方案 最近这几天正在忙这个优化的方案,一直没时间耍,忙碌了一段时间终于还是拿下了这个项目?项目中不要每次都把程序上的问题,让mysql数据库来承担,它只是个 ...

  8. 从运维角度来分析mysql数据库优化的一些关键点【转】

    概述 一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善. 1.数据库表设计 项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分 ...

  9. 关于mysql数据库优化

    关于mysql数据库优化 以我之愚见,数据库的优化在于优化存储和查询速度 目前主要的优化我认为是优化查询速度,查询速度快了,提高了用户的体验 我认为优化主要从两方面进行考虑, 优化数据库对象, 优化s ...

  10. mysql数据库优化 pt-query-digest使用

    mysql数据库优化 pt-query-digest使用 一.pt-query-digest工具简介 pt-query-digest是用于分析 mysql慢查询的一个工具,它可以分析binlog.Ge ...

随机推荐

  1. 吴恩达deepLearning.ai循环神经网络RNN学习笔记_看图就懂了!!!(理论篇)

    前言 目录: RNN提出的背景 - 一个问题 - 为什么不用标准神经网络 - RNN模型怎么解决这个问题 - RNN模型适用的数据特征 - RNN几种类型 RNN模型结构 - RNN block - ...

  2. php 的file 缓存

    PDO方式连接数据库类 <?php /** * @author 黄功延 * createTime 2018/5/28 0028 09:44 */ class Db { //私有化数据库连接数据, ...

  3. Flutter Widgets 之 InkWell 和 Ink

    注意:无特殊说明,Flutter版本及Dart版本如下: Flutter版本: 1.12.13+hotfix.5 Dart版本: 2.7.0 InkWell InkWell组件在用户点击时出现&quo ...

  4. C语言基础五 数组的应用

    .根据用户输入的10人成绩并将其保存到数组中,求最高成绩,最低成绩和平均成绩 int scoure[10];//存储10个数据的数组 int i; int sum;//总成绩 int max,min, ...

  5. Java的七大排序

    一.各个算法的时间复杂度 二,具体实现 1.直接选择排序 基本思想:在长度为n的序列中,第一次遍历找到该序列的最小值,替换掉第一个元素,接着从第二个元素开始遍历,找到剩余序列中的最小值,替换掉第二个元 ...

  6. Go语言SQL注入和防注入

    Go语言SQL注入和防注入 一.SQL注入是什么 SQL注入是一种注入攻击手段,通过执行恶意SQL语句,进而将任意SQL代码插入数据库查询,从而使攻击者完全控制Web应用程序后台的数据库服务器.攻击者 ...

  7. JavaScript节流与防抖函数封装

    js节流与防抖函数封装 常见应用场景: window的 resize 和 scroll 事件: 文字输入时的 keyup 事件: 元素拖拽.移动时的 mousemove 事件: 防抖 定义:多次触发事 ...

  8. Vue中的$Bus使用

    Vue中的$Bus使用 将Bus单独抽离成一个文件 Bus.js import Vue from 'vue'; let Bus = new Vue(); export default Bus; 创建两 ...

  9. ACP知识总结

    由于ACP是一个敏捷开发的系统性知识,下面只针对我自身学习的知识总结,若需要完整的考试学习资料,可评论区或私聊我拿.   敏捷估计与规划.png   ACP知识点锦集.png   敏捷项目软件总结.p ...

  10. [20200223]关于latch and mutext的优化.txt

    [20200223]关于latch and mutext的优化.txt --//前一段时间一直在测试使用DBMS_SHARED_POOL.MARKHOT标识热对象以及sql语句的优化.--//有别人问 ...