题目描述

输入

输出

对于每组数据,输出一个整数,表示达到“平衡”状态所需的最小代价。

样例输入

2

3

6 1 5

1 2 1

2 3 2

5

4 5 4 3 2

1 3 1

1 2 2

2 4 3

2 5 4

样例输出

4

4

数据范围

对于20%的数据,N<=15

对于100%的数据,T<=10,N<=100,0<=si<=10000,1<=X,Y<=N,1<=Z<=10000。

样例解释

对于第一组数据,从城市1到城市2运输2桶石油,代价为1*2=2;从城市3往城市2运输1桶石油,代价为2*1=2。此时三个城市储备量都为4桶,该状态的平衡度为0。

对于第二组数据,从城市2到城市5运输1桶石油,代价为1*4=4;此时五个城市储备量为(4,4,4,3,3),该状态的非平衡度为1.2,是能达到的所有状态的最小值。

解法

显然分配的桶数有(sum%n)个(sum/n+1)桶,其他都是sum/n个桶。

设f[i][j]为在i为根的子树中,放了j个(sum/n+1)桶。

这样对于这棵以i为根的子树,桶的总数是一定的,设为x;然后i与其父亲的流量显然是x-原桶数。

而一条边的贡献=流量*这条边的长度。

答案又是所有边的贡献之和。

所以给状态转移提供了条件。

没有必要把原树转化为二叉树。


题解还提供了网络流做法;以及二叉树形动态规划的做法。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
#define sqr(x) ((x)*(x))
#define ln(x,y) ll(log(x)/log(y))
using namespace std;
const char* fin="ex3567.in";
const char* fout="ex3567.out";
const ll inf=0x7fffffff;
const ll maxn=107,maxm=maxn*2;
ll t,n,m,m1,i,j,k,l,tot,INF;
ll fi[maxn],ne[maxm],la[maxm],a[maxn],va[maxm];
ll f[maxn][maxn],si[maxn],sum[maxn];
ll g[maxn][maxn][maxn];
void add_line(ll a,ll b,ll c){
tot++;
ne[tot]=fi[a];
la[tot]=b;
va[tot]=c;
fi[a]=tot;
}
void dfs(ll v,ll from){
ll i,j,k,l=0;
g[v][l][0]=0;
g[v][l][1]=0;
si[v]=1;
sum[v]=a[v];
for (k=fi[v];k;k=ne[k]){
if (la[k]!=from){
dfs(la[k],v);
si[v]+=si[la[k]];
sum[v]+=sum[la[k]];
for (i=0;i<=m;i++){
if (f[la[k]][i]>=INF) continue;
for (j=m-i;j>=0;j--){
if (g[v][l][j]>=INF) continue;
g[v][l+1][j+i]=min(g[v][l+1][j+i],g[v][l][j]+f[la[k]][i]+abs(sum[la[k]]-i*(m1+1)-(si[la[k]]-i)*m1)*va[k]);
}
}
l++;
}
}
for (i=0;i<=m;i++) f[v][i]=g[v][l][i];
}
int main(){
scanf("%d",&t);
for (;t;t--){
scanf("%d",&n);
memset(fi,0,sizeof(fi));
memset(f,127,sizeof(f));
memset(g,127,sizeof(g));
INF=g[0][0][0];
tot=0;
k=0;
for (i=1;i<=n;i++) scanf("%d",&a[i]),k+=a[i];
m=k%n;
m1=k/n;
for (i=1;i<n;i++){
scanf("%d%d%d",&j,&k,&l);
add_line(j,k,l);
add_line(k,j,l);
}
dfs(1,0);
//f[1][m]=-f[1][m];
printf("%lld\n",f[1][m]);
}
return 0;
}

启发

树形动态规划的必要条件之一:

设置的状态可以确定一棵子树所提供的贡献,从而可以进行转移。

【时光回溯】【JZOJ3567】【GDKOI2014】石油储备计划的更多相关文章

  1. 【GDKOI2014】JZOJ2020年8月13日提高组T2 石油储备计划

    [GDKOI2014]JZOJ2020年8月13日提高组T2 石油储备计划 题目 Description Input Output 对于每组数据,输出一个整数,表示达到"平衡"状态 ...

  2. jzoj 3567. 【GDKOI2014】石油储备计划

    Problem Description Input Output 对于每组数据,输出一个整数,表示达到"平衡"状态所需的最小代价. Data Constraint 对于20%的数据 ...

  3. 【时光回溯】【JZOJ3566】【GDKOI2014】阶乘

    题目描述 输入 第一行有一个正整数T,表示测试数据的组数. 接下来的T行,每行输入两个十进制整数n和base. 输出 对于每组数据,输出一个十进制整数,表示在base进制下,n!结尾的零的个数. 样例 ...

  4. 【时光回溯】【JZOJ3571】【GDKOI2014】内存分配

    题目描述 输入 输出 输出m行,每行一个整数,代表输入中每次程序变化后系统所需要的空闲内存单位数. 样例输入 2 3 1 4 1 4 2 2 1 2 1 1 1 1 1 样例输出 2 3 1 数据范围 ...

  5. 【时光回溯】【JZOJ3568】【GDKOI2014】小纪的作业题

    题目描述 输入 输出 有M行,每个询问一行,输出结果mod 1,000,000,007的值. 样例输入 10 3 3 5 1 2 3 1 3 5 2 1 7 9 3 9 2 3 样例输出 10 19 ...

  6. 帕累托分布(Pareto distributions)、马太效应

    什么是帕累托分布 帕累托分布是以意大利经济学家维弗雷多·帕雷托命名的. 是从大量真实世界的现象中发现的幂次定律分布.这个分布在经济学以外,也被称为布拉德福分布. 帕累托因对意大利20%的人口拥有80% ...

  7. hbase官方文档(转)

    FROM:http://www.just4e.com/hbase.html Apache HBase™ 参考指南  HBase 官方文档中文版 Copyright © 2012 Apache Soft ...

  8. HBase 官方文档

    HBase 官方文档 Copyright © 2010 Apache Software Foundation, 盛大游戏-数据仓库团队-颜开(译) Revision History Revision ...

  9. HBase官方文档

    HBase官方文档 目录 序 1. 入门 1.1. 介绍 1.2. 快速开始 2. Apache HBase (TM)配置 2.1. 基础条件 2.2. HBase 运行模式: 独立和分布式 2.3. ...

随机推荐

  1. php对输入的检测

    $data['value'] = trim(stripslashes(htmlspecialchars_decode($value)));

  2. JEECMS 系统权限设计

    1.用户校验. 登录校验主要围绕着用户后台登陆的url拦截 a.围绕着用户登录过程中设计到两张用户表 jc_user:存储着用户的基本信息 jo_user:存储着用户登录.注册.更新时间及用户密码信息 ...

  3. win10上的vs2015项目到win7的2015无法使用

  4. 2018-8-17-C#-从零开始写-SharpDx-应用-控制台创建-Sharpdx-窗口

    title author date CreateTime categories C# 从零开始写 SharpDx 应用 控制台创建 Sharpdx 窗口 lindexi 2018-8-17 9:3:3 ...

  5. sql作业启停服务器

    IF EXISTS(SELECT * FROM msdb.dbo.sysjobs WHERE name='启用pubs数据库') EXEC msdb.dbo.sp_delete_job @job_na ...

  6. 【xlwings1】Python-Excel 模块哪家强

    Python-Excel 模块哪家强?   0. 前言 从网页爬下来的大量数据需要清洗? 成堆的科学实验数据需要导入 Excel 进行分析? 有成堆的表格等待统计? 作为人生苦短的 Python 程序 ...

  7. 使用setTimeout函数解决栈溢出问题

    下面的代码,如果队列太长会导致栈溢出,怎样解决这个问题并且依然保持循环部分: var list = readHugeList(); var nextListItem = function() { va ...

  8. ADO.NET实体数据模型

    本文说一下如何使用ADO.NET实体数据模型,并解释一些概念. 1,首先你要建立一个数据库.比如我在SQL2005上面建立了数据库student,包含两个表: 2,然后再项目上添加新建项: 3,打开新 ...

  9. PHP实现git部署的方法,可以学学!

    https://mp.weixin.qq.com/s/QFpKu8oKoxOEA1BmT7pNhg   在小站点上,直接用git来部署php代码相当方便,你的远程站点以及本地版本库都有一个版本控制,追 ...

  10. ubuntu 安装 go 编译环境

    参考: http://wiki.ubuntu.org.cn/Golang 从仓库安装(apt-get) sudo apt-get install golang 修改环境变量: vim /etc/env ...