正解:网络流

解题报告:

传送门$QwQ$

开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,,

按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个特殊化的功能嘛$QwQ$

这题一样?考虑先还是给任务建一排点机器建一排点,然后$S$向任务连收益,机器向$T$连购买支出.然后考虑,本来任务和机器之间连的是$inf$,发现如果把流量改成租借支出就欧克了?

然后就做完辣!

然后$gql$就卡了$2h$的常,,,

说下几个点$QwQ$

第一个是,在$bfs$中找到$T$就可以$return$了

第二个是,在$dfs$中$flow=0$就可以$return$了

主要就这个第二个点,,,真的是,,,害得我卡了一个多小时的常,,,$QAQ$

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define gc getchar()
#define t(i) edge[i].to
#define n(i) edge[i].nxt
#define w(i) edge[i].wei
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i)
#define e(i,x) for(ri i=head[x];~i;i=n(i)) const int N=+,inf=1e9;
int head[N],ed_cnt=-,S,T,dep[N],cur[N],sum,n,m;
bool vis[N];
struct ed{int to,nxt,wei;}edge[N*N]; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il void ad(ri x,ri y,ri z){edge[++ed_cnt]=(ed){x,head[y],z};head[y]=ed_cnt;edge[++ed_cnt]=(ed){y,head[x],};head[x]=ed_cnt;}
il bool bfs()
{
queue<int>Q;Q.push(S);memset(dep,,sizeof(dep));dep[S]=;
while(!Q.empty())
{ri nw=Q.front();Q.pop();e(i,nw)if(w(i) && !dep[t(i)]){dep[t(i)]=dep[nw]+,Q.push(t(i));if(t(i)==T)return ;}}
return dep[T];
}
il int dfs(ri nw,ri flow)
{
if(nw==T || !flow)return flow;ri ret=;
for(ri &i=cur[nw];~i;i=n(i))if(w(i) && dep[t(i)]==dep[nw]+){ri tmp=dfs(t(i),min(flow,w(i)));flow-=tmp,w(i)-=tmp,ret+=tmp,w(i^)+=tmp;}
if(!ret)dep[nw]=;
return ret;
}
il int dinic(){ri ret=;while(bfs()){rp(i,S,T)cur[i]=head[i];while(int d=dfs(S,inf))ret+=d;}return ret;} int main()
{
//freopen("4177.in","r",stdin);freopen("4177.out","w",stdout);
memset(head,-,sizeof(head));n=read();m=read();S=;T=m+n+;
rp(i,,n){ri x=read();ad(i,S,x);sum+=x;ri num=read();while(num--){ri tmp=read();ad(tmp+n,i,read());}}
rp(i,,m)ad(T,i+n,read());
printf("%d\n",sum-dinic());
return ;
}

洛谷$P4177\ [CEOI2008]\ order$ 网络流的更多相关文章

  1. P4177 [CEOI2008]order 网络流,最小割,最大权闭合子图

    题目链接 \(Click\) \(Here\) 如果没有租用机器就是一个裸的最大权闭合子图.现在有了租用机器应该怎么办呢? 单独拆点是不行的,因为会和直接买下的情况脱离关系,租借是和连边直接相关的,那 ...

  2. P4177 [CEOI2008]order

    传送门 答案等于总工作价值减去最小失去的价值 考虑构建最小割模型 在 $S$割 的点表示选,在 $T$割 的点表示不选 对于机器(编号从 $n+1$ 到 $n+m$) $n+i$,连边 $(n+i,T ...

  3. P4177 [CEOI2008]order(网络流)最大权闭合子图

    P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...

  4. 题解 洛谷 P4177 【[CEOI2008]order】

    进行分析后,发现最大收益可以转化为最小代价,那么我们就可以考虑用最小割来解决这道题. 先算出总收益\(sum\),总收益减去最小代价即为答案. 然后考虑如何建图,如何建立最小割的模型. 发现一个任务最 ...

  5. [Luogu4177][CEOI2008]order

    luogu sol 这题有点像网络流24题里面的太空飞行计划啊. 最大收益=总收益-最小损失. 先令\(ans=\sum\)任务收益. 源点向每个任务连容量为收益的边. 每个机器向汇点连容量为购买费用 ...

  6. 洛谷P1251 餐巾(网络流)

    P1251 餐巾 15通过 95提交 题目提供者该用户不存在 标签网络流贪心 难度提高+/省选- 提交该题 讨论 题解 记录 最新讨论 为什么我全部10个测试点都对… 题目描述 一个餐厅在相继的N天里 ...

  7. Bzoj 1391: [Ceoi2008]order 网络流,最大权闭合图

    1391: [Ceoi2008]order Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1105  Solved: 331[Submit][Statu ...

  8. 3150luogu洛谷

    若说代码 那真的是很水 但是 思想却有点意思 这道题是洛谷博弈论专题的第一道入门题, 然而刚开始我是不会做的, 毕竟是道入门题, 我博弈论还没入门呢. 这道题的做法就是: 如果m为偶数, 那么先手赢( ...

  9. BZOJ 1391 [Ceoi2008]order

    1391: [Ceoi2008]order Description 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完 ...

随机推荐

  1. Vue电商后台管理系统项目第2天-首页添加表格动态渲染数据&分页

    0x01.使用Github学习的姿势 基于昨天的内容,今天的内容需要添加几个单文件组件,路由文件也需要做相应的增加,今天重点记录使用Element-UI中的表格组件实现数据动态渲染的实现流程和分页功能 ...

  2. linux之docker

    简介 Docker是一个开源的应用容器引擎,基于go语言,遵循从Apache2.0协议开源 Docker可以让开发者打包他们的应用以及依赖包到一个轻量级,可移植的容器中,然后发布到任何流行的linux ...

  3. 实时计算轻松上手,阿里云DataWorks Stream Studio正式发布

    Stream Studio是DataWorks旗下重磅推出的全新子产品.已于2019年4月18日正式对外开放使用.Stream Studi是一站式流计算开发平台,基于阿里巴巴实时计算引擎Flink构建 ...

  4. CF986F Oppa Funcan Style Remastered

    CF986F Oppa Funcan Style Remastered 不错的图论转化题! 题目首先转化成:能否用若干个k的非1因数的和=n 其次,因数太多,由于只是可行性,不妨直接都用质因子来填充! ...

  5. Java安装完毕后的环境配置

    右键计算机=>属性=>高级系统设置=>环境变量=>系统变量=>新建系统变量 变量名:JAVA_HOME变量值:E:\Program Files\Java\jdk-9.0. ...

  6. 【codeforces 520A】Pangram

    [题目链接]:http://codeforces.com/problemset/problem/520/A [题意] 给你一个字符串. 统计里面有没有出现所有的英文字母->'a'..'z' 每个 ...

  7. Jieba分词包(一)——解析主函数cut

    1. 解析主函数cut Jieba分词包的主函数在jieba文件夹下的__init__.py中,在这个py文件中有个cut的函数,这个就是控制着整个jieba分词包的主函数.    cut函数的定义如 ...

  8. PLSQL中的三种参数模式IN、OUT、IN OUT

    原文链接:https://www.cnblogs.com/zbj815/p/6854108.html 1.IN模式 IN模式是参数的默认模式,这种模式就是在程序运行的时候已经具有值,在程序体中值不会改 ...

  9. 基于BERT预训练的中文命名实体识别TensorFlow实现

    BERT-BiLSMT-CRF-NERTensorflow solution of NER task Using BiLSTM-CRF model with Google BERT Fine-tuni ...

  10. vue在渲染之前拿到数据操作.......vue数据获取

    异步请求数据,但是生命周期函数也是异步的,怎么才能保证渲染之前就能拿到数据呢? 官方给了两种方案, 我们可以在异步获取数据的时候加上一个loading表示现在在获取数据..... 由于ajax是异步操 ...