背景

学习 Linear Regression in Python – Real Python,前面几篇文章分别讲了“regression怎么理解“,”线性回归怎么理解“,现在该是实现的时候了。

线性回归的 Python 实现:基本思路

  • 导入 Python 包: 有哪些包推荐呢?

  • 准备数据
  • 建模拟合
  • 验证模型的拟合度
  • 预测:用模型来预测新的数据

实现细节

以最简单的线性回归为例,代码参考的是原文。

重点是掌握基本思路,以及关键的几个函数。影响拟合度的因素很多,数据源首当其冲,模型的选择也是关键,这些在实际应用中具体讨论,这里就简单的对应前面的基本思路将 sample 代码及运行结果贴一下,稍加解释。

安装并导入包

根据自己的需要导入

pip install scikit-learn
pip install numpy
pip install statsmodels from sklearn.preprocessing import PolynomialFeatures
import numpy as np
from sklearn.linear_model import LinearRegression
import statsmodels.api as sm

准备数据

""" prepare data

x: regressor

y: predictor

reshape: make it two dimentional - one column and many rows

y can also be 2 dimensional

"""

x = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1))
"""
[[ 5]
[15]
[25]
[35]
[45]
[55]]
"""
y = np.array([5, 20, 14, 32, 22, 38])
print(x, y)
# [ 5 20 14 32 22 38]

建模

'''create a model and fit it'''
model = LinearRegression()
model = model.fit(x, y)
print(model)
# LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

验证模型的拟合度

'''get result
y = b0 + b1x
'''
r_sq = model.score(x, y)
print('coefficient of determination(

Python - 线性回归(Linear Regression) 的 Python 实现的更多相关文章

  1. 机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables)

    机器学习(三)--------多变量线性回归(Linear Regression with Multiple Variables) 同样是预测房价问题  如果有多个特征值 那么这种情况下  假设h表示 ...

  2. TensorFlow 学习笔记(1)----线性回归(linear regression)的TensorFlow实现

    此系列将会每日持续更新,欢迎关注 线性回归(linear regression)的TensorFlow实现 #这里是基于python 3.7版本的TensorFlow TensorFlow是一个机器学 ...

  3. Stanford机器学习---第二讲. 多变量线性回归 Linear Regression with multiple variable

    原文:http://blog.csdn.net/abcjennifer/article/details/7700772 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归 ...

  4. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  5. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  6. 机器学习方法:回归(一):线性回归Linear regression

    欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 开一个机器学习方法科普系列:做基础回顾之用,学而时习之:也拿出来与大家分享.数学水平有限,只求易懂,学习与工 ...

  7. 斯坦福CS229机器学习课程笔记 Part1:线性回归 Linear Regression

    机器学习三要素 机器学习的三要素为:模型.策略.算法. 模型:就是所要学习的条件概率分布或决策函数.线性回归模型 策略:按照什么样的准则学习或选择最优的模型.最小化均方误差,即所谓的 least-sq ...

  8. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  9. 机器学习 (二) 多变量线性回归 Linear Regression with Multiple Variables

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang 的个人 ...

随机推荐

  1. 原生js实现计时器

    https://www.cnblogs.com/sandraryan/ 点击开始计时,可以计次,暂停.点了暂停可以继续计时,计次,点击重置清空. <!DOCTYPE html> <h ...

  2. 原生js设置audio在谷歌浏览器自动播放

    https://www.cnblogs.com/sandraryan/ 谷歌浏览器更新后禁止了autoplay功能,但是有时候可能会需要自动播放. 研究了一段代码. <!DOCTYPE html ...

  3. vue+element-ui 字体自适应不同屏幕

    项目背景:屏幕自适应问题,当在不同分辨率的屏幕上显示页面时,页面的字体需要根据屏幕大小来自适应,想到使用rem作为字体的单位 vue-cli脚手架下的index.html中写入以下js脚本 <s ...

  4. Python--day43--连表查询(重要)

  5. React MVC框架 <某某后台商品管理开源项目> 完成项目总结

    **百货后台商品信息开源项目 1.利用React  app脚手架 2.封装打包 buid 3.更偏向于后台程序员开发思维 4.利用的 react -redux    react-router-dom  ...

  6. H3C RIPv1的缺点

  7. 深入理解Jvm--Java静态分配和动态分配完全解析

    jvm中分配Dispatch的概念 分派是针对方法而言的,指的是方法确定的过程,通常发生在方法调用的过程中.分派根据方法选择的发生时机可以分为静态分派和动态分派,其中对于动态分派,根据宗量种数又可以分 ...

  8. url查找参数

    function GetUrlParam(paraName) { var url = document.location.toString(); var arrObj = url.split(&quo ...

  9. vue-cli常用插件集合

    element - 饿了么出品的Vue2的web UI工具套件 Vux - 基于Vue和WeUI的组件库 mint-ui - Vue 2的移动UI元素 iview - 基于 Vuejs 的开源 UI ...

  10. dll中全局变量在外部进行引用

    在Windows中实际导出全局变量,您必须使用类似于export / import语法的语法,例如: #ifdef COMPILING_THE_DLL #define MY_DLL_EXPORT ex ...