COGS2353 【HZOI2015】有标号的DAG计数 I
题面
题目描述
给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 10007的结果
输入格式
一个正整数n
输出格式
一个数,表示答案
样例输入
3
样例输出
25
提示
对于20%的数据:n<=5
对于50%的数据:n<=500
对于100%的数据:1<=n<=5000
题目分析
设\(f(i)\)表示有\(i\)个点构成DAG图
设其中\(j\)个点出度为\(0\),则有:
\]
意思是,在\(i\)个点中选出\(j\)个点有\(\binom ij\)种方案,
在\(i-j\)个点与这\(j\)个点之间随意连边,\(i-j\)个点构成的图仍为DAG的情况数。
但由于无法保证那\(i-j\)个点一定出度不为\(0\),所以需要容斥。
\]
代码实现
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=5005,mod=10007;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int f[N],c[N][N];
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=ret*x%mod;
x=x*x%mod,k>>=1;
}
return ret;
}
int main(){
freopen("DAG.in","r",stdin);
freopen("DAG.out","w",stdout);
int n=Getint();
c[0][0]=f[0]=1;
for(register int i=1;i<=n;c[i++][0]=1){
for(register int j=1;j<=i;++j){
c[i][j]=(c[i-1][j-1]+c[i-1][j])%mod;
f[i]=(f[i]+c[i][j]*ksm(2,j*(i-j)%(mod-1))%mod*f[i-j]%mod*((j&1)?1:-1)+mod)%mod;
}
}
cout<<f[n];
return 0;
}
COGS2353 【HZOI2015】有标号的DAG计数 I的更多相关文章
- COGS2355 【HZOI2015】 有标号的DAG计数 II
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图(可以不连通)进行计数,输出答案mod 998244353的结果 输入格式 一个正整数n 输出格式 一个数,表示答案 样例输入 3 样例输出 ...
- COGS2356 【HZOI2015】有标号的DAG计数 IV
题面 题目描述 给定一正整数n,对n个点有标号的有向无环图进行计数. 这里加一个限制:此图必须是弱连通图. 输出答案mod 998244353的结果 输入格式 一个正整数n. 输出格式 一个数,表示答 ...
- 有标号的DAG计数(FFT)
有标号的DAG计数系列 有标号的DAG计数I 题意 给定一正整数\(n\),对\(n\)个点有标号的有向无环图(可以不连通)进行计数,输出答案\(mod \ 10007\)的结果.\(n\le 500 ...
- 【题解】有标号的DAG计数4
[HZOI 2015] 有标号的DAG计数 IV 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln),然 ...
- 【题解】有标号的DAG计数3
[HZOI 2015] 有标号的DAG计数 III 我们已经知道了\(f_i\)表示不一定需要联通的\(i\)节点的dag方案,考虑合并 参考[题解]P4841 城市规划(指数型母函数+多项式Ln), ...
- 【题解】有标号的DAG计数2
[HZOI 2015] 有标号的DAG计数 II \(I\)中DP只有一个数组, \[ dp_i=\sum{i\choose j}2^{j(i-j)}dp_{i-j}(-1)^{j+1} \] 不会. ...
- 【题解】有标号的DAG计数1
[HZOI 2015] 有标号的DAG计数 I 设\(f_i\)为\(i\)个点时的DAG图,(不必联通) 考虑如何转移,由于一个DAG必然有至少一个出度为\(0\)的点,所以我们钦定多少个出度为\( ...
- COGS 2353 2355 2356 2358 有标号的DAG计数
不用连通 枚举入度为0的一层 卷积 发现有式子: 由$n^2-i^2-(n-i)^2=2*i*(n-i)$ 可得$2^{i*(n-i)}=\frac{{\sqrt 2}^{(n^2)}}{{\sqrt ...
- 有标号的DAG计数 III
Description 给定一正整数n,对n个点有标号的有向无环图进行计数,这里加一个限制:此图必须是弱连通图.输出答案 mod 10007 的结果. Solution 弱连通图即把边变成无向之后成为 ...
随机推荐
- 2-数据分析-matplotlib-1-概述
1.matplotlib: 最流行的Python底层绘图库,主要做数据可视化图表,名字取材于MATLAB,模仿MATLAB构建. 2.学习matplotlib的意义: (1)能将数据进行可视化,更直观 ...
- 【HDOJ】P5056 Boring count
题目意思是给你一个字符串和K,让你求其中有多少个字串中每个字母的出现次数不超过K次,可以等于 题目意思是很简单的,写起来也很简单,不过就是注意最后要是long long要不WA了,555~ #incl ...
- Linux 网络 tcp C/S通信模型
C/S模型就是server 与 client 的模型 TCP服务器模型流程图 ...
- Visio2016专业版永久激活码
Visio2016专业版永久激活码: [Key]:NKVJM-8MTT4-8YDFR-6738M-DPFJH [Key]:W9WC2-JN9W2-H4CBV-24QR7-M4HB8 [Key]:7K8 ...
- 了解GTIN小记
GTIN为条形码,即"全球贸易项目代码"(Global Trade Item Number ) GTIN用作识别商品品项的全球性独一编码,是编码系统中应用最广泛的标识代码. GTI ...
- js怎样判断一个数是质数
1.首先了解什么是质数(即:只能被1和它本身整除的数叫质数)主要代码 /** *判断该数是否为素数 */ function isPrimeNum(num){ ; i < num/+; i++) ...
- 17. final 关键字
1.flnal修饰成员变量 1)定义: 如果一个变量不想被修改,那么就用final修饰 2)语法 public static final double PI=3.14; 3)注意 1. 被fina ...
- CGLIB 详解
依赖 <dependency> <groupId>cglib</groupId> <artifactId>cglib</artifactId> ...
- springMVC快速入门 共分为五步
springMVC快速入门 共分为5步分别为: 1 导入依赖 2 spring-mvc.xml 配置 3 web.xml配置 4 自定义一个核心控制类 5 页面配置 详细步骤以及代码 ...
- Python-爬虫-requests库用语post登录
requests库很强大,支持HTTP连接保持和连接池,支持使用cookie保持会话,支持文件上传,支持自动确定响应内容的编码,支持国际化的URL和POST数据自动编码. 可以发送无参数的get请求, ...