3. Recursive AutoEncoder(递归自动编码器)
1. AutoEncoder介绍
2. Applications of AutoEncoder in NLP
3. Recursive Autoencoder(递归自动编码器)
4. Stacked AutoEncoder(堆栈自动编码器)
1. 前言
今天主要介绍用在NLP中比较常见的AutoEncoder的模型,Recursive Autoencoders(递归自动编码模型)。这篇文章主要讨论RAE在序列化的数据中,如何把数据降维并且用向量表示。
2. 矩阵表示
假设我们有一个矩阵\(L\)的表示向量,一个有序的有\(m\)个元素的序列,每个元素有\(k\)维的向量表示,我们用\(b_k\)代表我们需要找的那个向量,公式如下:
\[
x_i=Lb_k
\]
现在我们能用矩阵表示这个\(m\)个元素的序列了,\((x_1,x_2,x_3...,x_m)\)。
3. 非监督递归自动编码器
上图是RAE的二叉树递归结构,最底层的节点\(x_1,x_2...,x_m\)都是序列的内容。第一个RAE从在最底层最右边的两个孩子节点序列的元素\(x_1\),\(x_2\)开始,对它们进行重构,会产生一个隐藏层\(y_1\)。再上层一点,一个节点是序列中的元\(x_i\)素,另一个节点是下一程节点通过AE的过程算出来的隐藏层向量\(y_i\),经过RAE后,会产生隐藏节点\(y_{i+1}\),如此循环直到序列中所有元素都进行了AE的过程。
- 编码过程:父节点是\(y_1\),两个孩子节点是\(x_1\)和\(x_2\):
\[
\mathbf{y_1}=f(\mathbf{W}[\mathbf{x}_{1},\mathbf{x}_{2}]+\mathbf{b})
\]
- 解码过程:通过父节\(y_1\)点再重构\(x_1\)和\(x_2\)
\[
[\mathbf{x}_{1}';\mathbf{x}_{2}']=\mathbf{W}'\mathbf{y_1}+\mathbf{b}'
\]
- 损失函数
\[
E=\frac{1}{2}\Vert [\mathbf{x}_{1},\mathbf{x}_{2}]-[\mathbf{x}_{1}',\mathbf{x}_{2}']\Vert ^{2}
\]
这个过程在每一个AE过程中重复,直到构造出整棵树。
4. 优化
我们可以从几个方面去优化RAE。
- 选择一个好的方式去构造树:我们构造二叉树的方法很多。例如一个比较好的构造二叉树的方式是用贪婪算法在每一步去尝试每个可能选择孩子节点,最后选择这一步重构损失最低的方式建树。
- 选择一个好的重构损失函数:前面我们的重构损失是平均的惩罚所有序列的损失值。假设我们可以包含孩子节点多的RAE过程的损失的权重比包含孩子节点少的RAE过程的损失函数的权重大。
- 归一化:RAE计算的隐藏节点,它们后面会被下一个RAE重建。为了最小化重构的损失,RAE计算隐藏节点的时候可以对它进行归一化。
5. 总结
本文主要介绍了RAE的构造和优化方向,RAE适合用来处理序列问题。
3. Recursive AutoEncoder(递归自动编码器)的更多相关文章
- 7 Recursive AutoEncoder结构递归自编码器(tensorflow)不能调用GPU进行计算的问题(非机器配置,而是网络结构的问题)
一.源代码下载 代码最初来源于Github:https://github.com/vijayvee/Recursive-neural-networks-TensorFlow,代码介绍如下:“This ...
- Recursive - leetcode [递归]
经验tips: Recursion is the best friend of tree-related problems. 一是只要遇到字符串的子序列或配准问题首先考虑动态规划DP,二是只要遇到需要 ...
- React-router4 第七篇 Recursive Paths 递归路径
https://reacttraining.com/react-router/web/example/recursive-paths import React from 'react' import ...
- [03] Recursive Function递归应用
递归应用 1.理解 百科:一种计算过程,如果其中每一步都要用到前一步或前几步的结果,称为递归的: 理解:函数调用自己的过程,这类函数处理的事情具有重复性,处理此类实行可用while或者for,但结构上 ...
- Learning Structured Representation for Text Classification via Reinforcement Learning 学习笔记
Representation learning : 表征学习,端到端的学习 pre-specified 预先指定的 demonstrate 论证;证明,证实;显示,展示;演示,说明 attempt ...
- 4. Stacked AutoEncoder(堆栈自动编码器)
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked ...
- 降噪自动编码器(Denoising Autoencoder)
起源:PCA.特征提取.... 随着一些奇怪的高维数据出现,比如图像.语音,传统的统计学-机器学习方法遇到了前所未有的挑战. 数据维度过高,数据单调,噪声分布广,传统方法的“数值游戏”很难奏效.数据挖 ...
- 9.1、AutoEncoder自动编码器[转]
如果给定一个神经网络,我们假设其输出与输入是相同的,然后训练调整其参数,得到每一层中的权重.自然地,我们就得到了输入I的几种不同表示(每一层代表一种表示),这些表示就是特征.自动编码器就是一种尽可能复 ...
- 2. AutoEncoder在NLP中的应用
1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked ...
随机推荐
- 【java】自定义异常类
目录结构: contents structure [+] 为什么需要自定义异常类 自定义异常的方式 实例 日常日志 一,为什么需要自定义异常类 当java中的异常类型没有能够满足我们所需的异常的时候就 ...
- Android MediaPlayer和VideoView的使用
MediaPlayer MediaPlayer类是Androd多媒体框架中的一个重要组件,通过该类,我们可以以最小的步骤来获取,解码和播放音视频.它支持三种不同的媒体来源: 本地资源 内部 ...
- API设计原则
译序 Qt的设计水准在业界很有口碑,一致.易于掌握和强大的API是Qt最著名的优点之一.此文既是Qt官网上的API设计指导准则,也是Qt在API设计上的实践总结.虽然Qt用的是C++,但其中设计原则和 ...
- [译]Spring Boot 构建一个RESTful Web服务
翻译地址:https://spring.io/guides/gs/rest-service/ 构建一个RESTful Web服务 本指南将指导您完成使用spring创建一个“hello world”R ...
- 适合移动端与PC端的 CSS Reset - m_base.css
文章来源:http://www.cnblogs.com/HCJJ/p/6399185.html 具体代码 @charset "utf-8"; html { -ms-text-siz ...
- 如何给mysql用户分配权限
1,Mysql下创建新的用户 语法: 1.create user 用户名 identified by '密码'; 例:create user xiaogang identified by '12345 ...
- 硬盘 SMART 检测参数详解[转]
一.SMART概述 硬盘的故障一般分为两种:可预测的(predictable)和不可预测的(unpredictable).后者偶而会发生,也没有办法去预防它,例如芯片突然失效,机械撞击等.但像电机轴承 ...
- Four Node.js Gotchas that Operations Teams Should Know about
There is no doubt that Node.js is one of the fastest growing platforms today. It can be found at sta ...
- processing fill()和stroke()函数
在procesiing有两个基本的函数,fill()和stroke()函数,这两个函数分别用来控制形状填充颜色和形状轮廓的颜色,fill()和stroke()可以接受的参数的个数为1,2,3.当参数的 ...
- 已安装 SQL Server 2005,安装 SQL Server 2008 时提示需要删除 SQL Server 2005 Express 工具
错误提示:已安装 SQL Server 2005 Express 工具.若要继续,请删除 SQL Server 2005 Express 工具. 解决方案: 修改注册表:HKLM\Software ...