[Bayes] What is Sampling
Ref: http://blog.csdn.net/xianlingmao/article/details/7768833
通常,我们会遇到很多问题无法用分析的方法来求得精确解,例如由于式子特别,真的解不出来;
一般遇到这种情况,人们经常会采用一些方法去得到近似解,已经近似程度。
本文要谈的随机模拟就是这么一类近似求解的方法。
它的诞生虽然最早可以追溯到18xx年法国数学家蒲松的投针问题(用模拟的方法来求解\pi的问题),但是真正的大规模应用还是被用来解决二战时候美国生产原子弹所碰到的各种难以解决的问题而提出的蒙特卡洛方法(Monte Carlo),从此一发不可收拾。
一. 随机模拟的基本思想
其基本思路就是要把待解决的问题转化为一种可以通过某种采样方法可以解决的问题,至于怎么转化,还是挺有创造性,没有定法。
因此,随机模拟方法的核心就是:如何对一个概率分布得到样本,即抽样(sampling)。
二. 常见的抽样方法
2.0 直接抽样法
略。
2.1 接受-拒绝抽样(Acceptance-Rejection sampling)
又简称拒绝抽样,直观地理解,为了得到一个分布的样本,我们通过某种机制得到了很多的初步样本,然后其中一部分初步样本会被作为有效的样本(即要抽取的分布的样本),一部分初步样本会被认为是无效样本舍弃掉。
这个算法的基本思想是:我们需要对一个分布f(x)进行采样,但是却很难直接进行采样,所以我们想通过另外一个容易采样的分布g(x)的样本,用某种机制去除掉一些样本,从而使得剩下的样本就是来自与所求分布f(x)的样本。
2.2 重要性抽样(Importance sampling)
重要性采样 和 蒙特卡洛积分 密切相关。
给每个样本赋予了一个权重,g(xi)大意味着概率大,那么N里面含有这样的样本xi就多,即这些样本的权重大,所以称为重要性抽样。
2.3 MCMC抽样方法
无论是拒绝抽样还是重要性采样,都是属于独立采样,即样本与样本之间是独立无关的,这样的采样效率比较低,如拒绝采样,所抽取的样本中有很大部分是无效的,这样效率就比较低。
MCMC方法是关联采样,即下一个样本与这个样本有关系,从而使得采样效率高。
MCMC方法的基本思想是:通过构建一个markov chain使得该markov chain的稳定分布是我们所要采样的分布f(x)。
当markov chain达到稳定状态,那么来自这个chain的每个样本都是f(x)的样本,从而实现抽样的目的。
这里存在一个核心问题,如何构建满足要求的markov chain?
A). Metropolis-Hasting算法
见:[Bayes] dchisq: Metropolis-Hastings Algorithm
B). Gibbs采样算法
暂略。
当然无论是metropolis-hasting算法还是gibbs算法,都有一个burn in的过程,在burn in过程中产生的样本都需要被舍弃。
可以证明Gibbs算法是metropolis-hasting算法的一个特例,即比率\alpha(x,y) = 1的一个特列。具体证明,此处略。
[Bayes] What is Sampling的更多相关文章
- [Bayes] runif: Inversion Sampling
runifum Inversion Sampling 看样子就是个路人甲. Ref: [Bayes] Hist & line: Reject Sampling and Importance S ...
- [Bayes] dchisq: Metropolis-Hastings Algorithm
dchisq gives the density, # 计算出分布下某值处的密度值 pchisq gives the distribution fun ...
- [Bayes] MCMC (Markov Chain Monte Carlo)
不错的文章:LDA-math-MCMC 和 Gibbs Sampling 可作为精进MCMC抽样方法的学习材料. 简单概率分布的模拟 Box-Muller变换原理详解 本质上来说,计算机只能生产符合均 ...
- [AI] 深度数学 - Bayes
数学似宇宙,韭菜只关心其中实用的部分. scikit-learn (sklearn) 官方文档中文版 scikit-learn Machine Learning in Python 一个新颖的onli ...
- 本人AI知识体系导航 - AI menu
Relevant Readable Links Name Interesting topic Comment Edwin Chen 非参贝叶斯 徐亦达老板 Dirichlet Process 学习 ...
- [UFLDL] Generative Model
这一部分是个坑,应该对绝大多数菜鸡晕头转向的部分,因为有来自物理学界的问候. Deep learning:十九(RBM简单理解) Deep learning:十八(关于随机采样) 采样方法 [B ...
- [Bayes] Hist & line: Reject Sampling and Importance Sampling
吻合度蛮高,但不光滑. > L= > K=/ > x=runif(L) > *x*(-x)^/K)) > hist(x[ind],probability=T, + xla ...
- [Bayes] prod: M-H: Independence Sampler for Posterior Sampling
M-H是Metropolis抽样方法的扩展,扩展后可以支持不对称的提议分布. 对于M-H而言,根据候选分布g的不同选择,衍生出了集中不同的变种: (1)Metropolis抽样方法 (2)随机游动Me ...
- [Bayes] Parameter estimation by Sampling
虽然openBugs效果不错,但原理是什么呢?需要感性认识,才能得其精髓. Recall [Bayes] prod: M-H: Independence Sampler firstly. 采样法 Re ...
随机推荐
- Introduction to MyBatis Generator Mybatis代码生成介绍
Mybatis官方提供了代码生成工具,这里是官方网站: http://mybatis.github.io/generator/index.html 可以自动生成 Java POJOs, Mapper. ...
- libevent简述
libevent是一个轻量级的基于事件驱动的高性能的开源网络库,并且支持多个平台,对多个平台的I/O复用技术进行了封装,当我们编译库的代码时,编译的脚本将会根据OS支持的处理事件机制,来编译相应的代码 ...
- WCF数据交互时长度超过8192
wcf项目里面,客户端的某个函数执行时可能需要上传13000个字符到服务器. 按照常规的接口+客户端调用写好代码之后,出现了这么个错误: 网上查了很多资料,没有能够一步到位解决问题的.花了2个小时,总 ...
- Python基础知识小结
1. 关于函数传参 def func(n, *args, **kwargs): print n print args print kwargs if __name__ == '__main__': # ...
- 阿里云免费SSL证书绑定+sever2012 IIS配置
1.阿里云域名 2.点击证书 3.免费证书 4.下载证书 5.服务器-运行-mmc 进入制台程序 6.制台程序,选择菜单“文件"中的"添加/删除管理单元”-> “添加”,从“ ...
- 【oneday_onepage】——Growth Is A Bitch
Companies are worth a multiple of their earnings and that multiple is directly related to earnings g ...
- HashTable和HashMap的区别详解
一.HashMap简介 HashMap是基于哈希表实现的,每一个元素是一个key-value对,其内部通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. HashMap是非线程安全的, ...
- 9、Qt 事件处理机制
原文地址:http://mobile.51cto.com/symbian-272812.htm 在Qt中,事件被封装成一个个对象,所有的事件均继承自抽象类QEvent. 接下来依次谈谈Qt中有谁来产生 ...
- Hive之分区(Partitions)和桶(Buckets)
转自:http://www.aahyhaa.com/archives/316 hive引入partition和bucket的概念,中文翻译分别为分区和桶(我觉的不是很合适,但是网上基本都是这么翻译,暂 ...
- 3D Face Reconstruction
方法1 Large Pose 3D Face Reconstruction from a Single Image via Direct Volumetric CNN Regression http: ...