基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题
 收藏
 关注
给出一段区间a-b,统计这个区间内0-9出现的次数。
比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次。
Input
两个数a,b(1 <= a <= b <= 10^18)
Output
输出共10行,分别是0-9出现的次数
Input示例
10 19
Output示例
1
11
1
1
1
1
1
1
1
1

没什么思路 看了题解前半部分 说跟51nod上一道问1的个数的题很像

题目在这里

基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题
 收藏
 关注
给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数。
例如:n = 12,包含了5个1。1,10,12共包含3个1,11包含2个1,总共5个1。
Input
输入N(1 <= N <= 10^9)
Output
输出包含1的个数
Input示例
12
Output示例
5

感觉思路真的挺巧妙的 统计各个位数是1的数

比如:12。个位上可能出现1的数为1,11(一共2个),十位上可能出现1的个数为10,11,12(一共3个),加一起正好是5。(至于11是否重复的问题,还是再理解一下上面的做法,这个做法只考虑了每一位出现1的数,11在个位上算和在十位上算是不一样的,所以并没有重复)。

21905:

个位:它出现1的数为:1 ~ 21901,一共 2190 - 0 + 1 = 2191

十位:它出现1的数为:1x ~ 2181x (x 从0到9)一共:(218 - 0 + 1)*10 = 2190

百位:它出现1的数为:1xx ~ 211xx ,一共:(21 - 0 + 1)* 100 = 2200

千位:它出现1的数为:1xxx ~ 11xxx 和 21000 ~ 21905 ,那么很明显,这个情况就比较特殊了,为什么呢?下面再说,我们先计数,一共:(1 - 0 + 1)*1000 + (905 - 0 + 1)= 2000 + 906 = 2906

万位:它出现1的数为:1xxxx ~ 1xxxx,一共:10000

那么现在这道题相当于就是把1009的代码改一下,不仅仅是看1了
把1到a-1的统计一下 1到b的统计一下 相减就是结果了
但是写了以后发现还有问题 因为0比较特殊 不能作为分母 也不能用来取模
改了半天 发现还是得重新写一个针对0的函数
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <cstring>
#include <cmath>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std; ll a, b;
ll ansa[10], ansb[10]; ll cntnum(int num, ll n)
{
ll ans = 0, tmp = n;
long long tnum = 1;
while(tmp){
long long t = tmp % 10;
if(t < num && num){
ans += n / (tnum * 10) * tnum;
}
else if(t == num){
if(num){
ans += n / (tnum * 10) * tnum;
ans += (n % tnum) + 1;
}
else ans++;
}
else{
if(num)ans += (n / (tnum * 10) + 1) * tnum;
else ans++;
} tnum *= 10;
tmp /= 10;
} return ans;
} ll cnt0(ll n)
{
ll i = 1;
ll ans = 0;
ll before = 0, cur = 0, after = 0;
while((n / i)){
cur = (n / i) % 10;
before = n / (i * 10);
after = n - (before * 10 + cur) * i;
if(cur == 0){
ans += (before - 1) * i + after + 1;
}
else{
ans += before * i;
}
i *= 10;
}
return ans;
} int main()
{
while(scanf("%I64d%I64d", &a, &b) != EOF){
memset(ansa, 0, sizeof(ansa));
memset(ansb, 0, sizeof(ansb));
ansa[0] = cnt0(a - 1);
ansb[0] = cnt0(b);
for(int i = 1; i <= 9; i++){
ansa[i] = cntnum(i, a - 1);
ansb[i] = cntnum(i, b);
//cout<< ansb[i] - ansa[i]<<endl;
}
/*while(a){
ansa[a % 10]--;
a /= 10;
}*/ for(int i = 0; i <= 9; i++){
cout<< ansb[i] - ansa[i]<<endl;
} }
return 0;
}

新改的这份代码应该会更容易理解一点

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <cstring>
#include <cmath>
#define inf 0x3f3f3f3f
#define ll long long
using namespace std; ll a, b;
ll ansa[10], ansb[10]; /*ll cntnum(int num, ll n)
{
ll ans = 0, tmp = n;
long long tnum = 1;
while(tmp){
long long t = tmp % 10;
if(t < num){
ans += n / (tnum * 10) * tnum;
}
else if(t == num){
ans += n / (tnum * 10) * tnum;
ans += (n % tnum) + 1;
}
else{
ans += (n / (tnum * 10) + 1) * tnum;
} tnum *= 10;
tmp /= 10;
} return ans;
}*/ ll cnt0(ll n)
{
ll i = 1;
ll ans = 0;
ll before = 0, cur = 0, after = 0;
while((n / i)){
cur = (n / i) % 10;
before = n / (i * 10);
after = n - (before * 10 + cur) * i;
if(cur == 0){
ans += (before - 1) * i + after + 1;
}
else{
ans += before * i;
}
i *= 10;
}
return ans;
} ll cntnum(int num, ll n)
{
ll i = 1;
ll ans = 0;
ll before = 0, cur = 0, after = 0;
while((n / i)){
cur = (n / i) % 10;
before = n / (i * 10);
after = n - (before * 10 + cur) * i;
if(cur == num){
ans += before * i + after + 1;
}
else if(cur < num){
ans += before * i;
}
else{
ans += (before + 1) * i;
}
i *= 10;
}
return ans;
}
int main()
{
while(scanf("%I64d%I64d", &a, &b) != EOF){
memset(ansa, 0, sizeof(ansa));
memset(ansb, 0, sizeof(ansb));
ansa[0] = cnt0(a - 1);
ansb[0] = cnt0(b);
for(int i = 1; i <= 9; i++){
ansa[i] = cntnum(i, a - 1);
ansb[i] = cntnum(i, b);
//cout<< ansb[i] - ansa[i]<<endl;
}
/*while(a){
ansa[a % 10]--;
a /= 10;
}*/ for(int i = 0; i <= 9; i++){
cout<< ansb[i] - ansa[i]<<endl;
} }
return 0;
}

51nod 1042数字0-9的数量的更多相关文章

  1. 51nod 1042 数字0-9的数量 数位dp

    1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 给出一段区间a-b,统计这个区间内0-9出现的次数.   比如 10-1 ...

  2. 51nod 1042 数字0-9的数量

    给出一段区间a-b,统计这个区间内0-9出现的次数.   比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次. Inp ...

  3. (数位DP)51NOD 1042 数字0-9的数量

    给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次.   输入 ...

  4. 51nod- 【1042 数字0-9的数量 】

    题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1042 题目: 1042 数字0-9的数量 基准时间限制:1  ...

  5. 1042 数字0-9的数量 1050 循环数组最大子段和 1062 序列中最大的数 1067 Bash游戏 V2 1092 回文字符串

    1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 给出一段区间a-b,统计这个区间内0-9出现的次数.   比如 10-19,1出现11次 ...

  6. 51 Nod1042 数字0到9的数量

    1042 数字0-9的数量  基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题  收藏  关注 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19 ...

  7. 51nod 1042 数位dp

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1042 1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131 ...

  8. 字符串怎么换行 || 字符串中使用单引号时应该怎么写 || 保留两位小数 || 数字0在if中的意思是false || 什么情况下会会报undefined || null和undefined的区别 ||

    换行的字符串 "This string\nhas two lines" 字符串中使用单引号时应该怎么写 'You\'re right, it can\'t be a quote' ...

  9. 【编程题目】n 个数字(0,1,…,n-1)形成一个圆圈,从数字 0 开始

    第 18 题(数组):题目:n 个数字(0,1,…,n-1)形成一个圆圈,从数字 0 开始,每次从这个圆圈中删除第 m 个数字(第一个为当前数字本身,第二个为当前数字的下一个数字).当一个数字删除后, ...

随机推荐

  1. liunx(centos7 ) 免密码登录

    centos7 1.准备两台机器 如:(A机器) 和  (B机器) A机器 删除(.ssh目录下文件 known_hosts) 2. 对两台机器生成密钥 在  (A机器)上执行命令: [root@iZ ...

  2. PMP模拟考试-2

    1. Increasing resources on the critical path activities may not always shorten the length of the pro ...

  3. 海康视频监控---Demo

    1,使用在页面中调用ActiveX控件 <object classid='clsid:E7EF736D-B4E6-4A5A-BA94-732D71107808' codebase='' stan ...

  4. ios开发之--NSDictionary和NSData之间的互转/NSString和NSData之间的互转

    NSDictionary转NSData,代码如下: +(NSData*)returnDataWith:(NSDictionary*)dict { NSData *data = [NSJSONSeria ...

  5. iOS 使用正则表达式库RegexKitLite的问题

    因为RegexKitLite使用ICU库,所以需要动态链接到/usr/lib/libicucore.dylib库当中去,否则你会得到错误.具体Dynamically linked to /usr/li ...

  6. MySQL使用DDL语句创建表

    一.使用DDL语句创建表 DDL语言全面数据定义语言(Data Define Language) 主要的DDL动词: CREATE(创建).DROP(删除).ALTER(修改) TRUNCATE(截断 ...

  7. 【Android】录音暂停和继续

    https://www.2cto.com/kf/201410/347839.html http://blog.csdn.net/wanli_smile/article/details/7715030 ...

  8. 使用 urllib 构造请求对象

    (1) urllib.request.urlopen()方法可以实现最基本请求的发起,但这几个简单的参数并不足以构建一个完整的请求(2) 我们可以使用 urllib.request.Request() ...

  9. 2018.8.23几日重新编译OSG+OE+Qt遇到的问题

    Qt安装多个版本的时候,注意屏蔽掉不使用的Qt,例如OE中的CMakeLists.txt中的# FIND_PACKAGE(Qt4) 使用以前编译好的libcurl.dll现在出现"无法定位序 ...

  10. linux实现开机自启动脚本

    Linux下(以RedHat为范本)添加开机自启动脚本有两种方法,先来简单的; 一.在/etc/rc.local中添加如果不想将脚本粘来粘去,或创建链接什么的,则:step1. 先修改好脚本,使其所有 ...