POJ-1644 To Bet or Not To Bet(概率DP)
To Bet or Not To Bet
Time Limit: 1000MS Memory Limit: 10000K
Total Submissions: 1668 Accepted: 541
Description
Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below.
A chip is initially placed on the Start square. The player then tries to move the chip to the End square through a series of turns, at which point the game ends. In each turn a coin is fl
ipped: if the coin is heads the chip is moved one square to the right and if the coin is tails the chip is moved two squares to the right (unless the chip is one square away from the End square, in which case it just moves to the End square). At that point, any instruction on the square the coin lands on must be followed. Each instruction is one of the following:
1. Move right n squares (where n is some positive integer)
2. Move left n squares (where n is some positive integer)
3. Lose a turn
4. No instruction
After following the instruction, the turn ends and a new one begins. Note that the chip only follows the instruction on the square it lands on after the coin flip. If, for example, the chip lands on a square that instructs it to move 3 spaces to the left, the move is made, but the instruction on the resulting square is ignored and the turn ends. Gambling for this game proceeds as follows: given a board layout and an integer T, you must wager whether or not you think the game will end within T turns.
After losing his shirt and several other articles of clothing, Alexander has decided he needs professional help-not in beating his gambling addiction, but in writing a program to help decide how to bet in this game.
Input
Input will consist of multiple problem instances. The first line will consist of an integer n indicating the number of problem instances. Each instance will consist of two lines: the first will contain two integers m and T (1 <= m <= 50, 1 <= T <= 40), where m is the size of the board excluding the Start and End squares, and T is the target number of turns. The next line will contain instructions for each of the m interior squares on the board. Instructions for the squares will be separated by a single space, and a square instruction will be one of the following: +n, -n, L or 0 (the digit zero). The first indicates a right move of n squares, the second a left move of n squares, the third a lose-a-turn square, and the fourth indicates no instruction for the square. No right or left move will ever move you off the board.
Output
Output for each problem instance will consist of one line, either
Bet for. x.xxxx
if you think that there is a greater than 50% chance that the game will end in T or fewer turns, or
Bet against. x.xxxx
if you think there is a less than 50% chance that the game will end in T or fewer turns, or
Push. 0.5000
otherwise, where x.xxxx is the probability of the game ending in T or fewer turns rounded to 4 decimal places. (Note that due to rounding the calculated probability for display, a probability of 0.5000 may appear after the Bet for. or Bet against. message.)
Sample Input
5
4 4
0 0 0 0
3 3
0 -1 L
3 4
0 -1 L
3 5
0 -1 L
10 20
+1 0 0 -1 L L 0 +3 -7 0
Sample Output
Bet for. 0.9375
Bet against. 0.0000
Push. 0.5000
Bet for. 0.7500
Bet for. 0.8954
概率DP题目,
递推即可,
#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <string>
using namespace std;
#define MAX 999999
char a[55];
int m,t;
double dp[55][55];
int b[55];
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
memset(dp,0,sizeof(dp));
memset(b,0,sizeof(b));
scanf("%d%d",&m,&t);
for(int i=1;i<=m;i++)
{
scanf("%s",a);
if(a[0]=='L')
b[i]=MAX;
else
sscanf(a,"%d",&b[i]);
}
b[0]=0;b[m+1]=0;b[m+2]=-1;
dp[0][0]=1.0;
for(int i=0;i<t;i++)
{
for(int j=0;j<m+1;j++)
{
if(b[j+1]==MAX)
dp[i+2][j+1]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+1]+1]+=dp[i][j]*0.5;
if(b[j+2]==MAX)
dp[i+2][j+2]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+2]+2]+=dp[i][j]*0.5;
}
}
double ans=0;
for(int i=0;i<=t;i++)
ans+=dp[i][m+1];
if(ans>0.5)
printf("Bet for. %.4f\n",ans);
else if(ans==0.5)
printf("Push. 0.5000\n");
else if(ans<0.5)
printf("Bet against. %.4f\n",ans);
}
return 0;
}
POJ-1644 To Bet or Not To Bet(概率DP)的更多相关文章
- poj 2151 Check the difficulty of problems(概率dp)
poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...
- POJ 2151 Check the difficulty of problems:概率dp【至少】
题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...
- POJ 2151 Check the difficulty of problems (概率dp)
题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...
- UVA 1541 - To Bet or Not To Bet(概率递推)
UVA 1541 - To Bet or Not To Bet 题目链接 题意:这题题意真是神了- -.看半天,大概是玩一个游戏,開始在位置0.终点在位置m + 1,每次扔一个硬币,正面走一步,反面走 ...
- UVA 1541 - To Bet or Not To Bet 记忆化DP概率
Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a n ...
- poj 3071 Football(概率dp)
id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...
- 【POJ】2151:Check the difficulty of problems【概率DP】
Check the difficulty of problems Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8903 ...
- 【POJ 2750】 Potted Flower(线段树套dp)
[POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4566 ...
- POJ 2096 Collecting Bugs (概率DP,求期望)
Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...
随机推荐
- android5.1移植记录
应用能够配置Android系统的各种设置,这些设置的默认值都是由frameworks中的SettingsProvider从数据库中读取的frameworks/base/packages/Setting ...
- Android重写HorizontalScrollView仿ViewPager效果
Android提供的ViewPager类太复杂,有时候没有必要使用,所以重写一个HorizontalScrollView来实现类似的效果,也可以当做Gallery来用 思路很简单,就是重写onTouc ...
- 常用CSS备忘
1 怎样让div中的img居中 水平居中:div设置:text-align:center; img设置:width:图片宽度; margin:0 auto; 垂直居中:div设置:position:r ...
- 01-虚拟软件vmware安装
什么是虚拟软件: 虚拟原件是一个可以使你在一台机器上同时运行二个或更多Windows.LINUX等系统.它可以模拟一个标准PC环境.这个环境和真实的计算机一样,都有芯片组.CPU.内存.显卡.声卡.网 ...
- Oracle sqlldr导入之“MAXIMUM ERROR COUNT EXCEEDED”
昨天看到一个同事在通过PL/SQL Developer工具把文本数据往oracle表;有两个文本:一个有30万条记录:一个7万多条记录.在导入到过程中:出现错误记录还需要点击确认.不过使用黑科技(屏幕 ...
- jenkins构建的robot result结果不更新
描述:构建的结果不进行更新,仍然显示以往的构建结果 定位原因:pybot 命令中生成的结果文件保存路径与构建后robot结果显示路径不一致所致 解决办法:修改二者的结果保存路径一致
- httpClient创建对象、设置超时
从老版本和新版本进行比较说明: 1.创建HttpClient对象 3.X: HttpClient httpClient = new DefaultHttpClient(); 4.3: Closeabl ...
- Linux chmod和chown更改文件目录的所属者命令的用法
一.chown 命令 用途:更改文件的所有者或组.命令由单词change owner组合而成. 使用示例: 1,更改文件的所有者: chown jim program.c 文件 program.c 的 ...
- 新唐ISP操作步骤(转)
1,电脑上装上“NuMicro_ICP_Programming_Tool_v1.18.5320.zip”:2,把目标板通过SWD口的NU-LINK连接到电脑的USB口上:3,打开桌面的“NuMicro ...
- codeforces水题100道 第十七题 Codeforces Beta Round #25 (Div. 2 Only) A. IQ test (brute force)
题目链接:http://www.codeforces.com/problemset/problem/25/A题意:在n个书中找到唯一一个奇偶性和其他n-1个数不同的数.C++代码: #include ...