To Bet or Not To Bet

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 1668 Accepted: 541

Description

Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below.

A chip is initially placed on the Start square. The player then tries to move the chip to the End square through a series of turns, at which point the game ends. In each turn a coin is fl

ipped: if the coin is heads the chip is moved one square to the right and if the coin is tails the chip is moved two squares to the right (unless the chip is one square away from the End square, in which case it just moves to the End square). At that point, any instruction on the square the coin lands on must be followed. Each instruction is one of the following:

1. Move right n squares (where n is some positive integer)

2. Move left n squares (where n is some positive integer)

3. Lose a turn

4. No instruction

After following the instruction, the turn ends and a new one begins. Note that the chip only follows the instruction on the square it lands on after the coin flip. If, for example, the chip lands on a square that instructs it to move 3 spaces to the left, the move is made, but the instruction on the resulting square is ignored and the turn ends. Gambling for this game proceeds as follows: given a board layout and an integer T, you must wager whether or not you think the game will end within T turns.

After losing his shirt and several other articles of clothing, Alexander has decided he needs professional help-not in beating his gambling addiction, but in writing a program to help decide how to bet in this game.

Input

Input will consist of multiple problem instances. The first line will consist of an integer n indicating the number of problem instances. Each instance will consist of two lines: the first will contain two integers m and T (1 <= m <= 50, 1 <= T <= 40), where m is the size of the board excluding the Start and End squares, and T is the target number of turns. The next line will contain instructions for each of the m interior squares on the board. Instructions for the squares will be separated by a single space, and a square instruction will be one of the following: +n, -n, L or 0 (the digit zero). The first indicates a right move of n squares, the second a left move of n squares, the third a lose-a-turn square, and the fourth indicates no instruction for the square. No right or left move will ever move you off the board.

Output

Output for each problem instance will consist of one line, either

Bet for. x.xxxx

if you think that there is a greater than 50% chance that the game will end in T or fewer turns, or

Bet against. x.xxxx

if you think there is a less than 50% chance that the game will end in T or fewer turns, or

Push. 0.5000

otherwise, where x.xxxx is the probability of the game ending in T or fewer turns rounded to 4 decimal places. (Note that due to rounding the calculated probability for display, a probability of 0.5000 may appear after the Bet for. or Bet against. message.)

Sample Input

5

4 4

0 0 0 0

3 3

0 -1 L

3 4

0 -1 L

3 5

0 -1 L

10 20

+1 0 0 -1 L L 0 +3 -7 0

Sample Output

Bet for. 0.9375

Bet against. 0.0000

Push. 0.5000

Bet for. 0.7500

Bet for. 0.8954

概率DP题目,

递推即可,

#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <string> using namespace std;
#define MAX 999999
char a[55];
int m,t;
double dp[55][55];
int b[55];
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
memset(dp,0,sizeof(dp));
memset(b,0,sizeof(b));
scanf("%d%d",&m,&t);
for(int i=1;i<=m;i++)
{
scanf("%s",a); if(a[0]=='L')
b[i]=MAX;
else
sscanf(a,"%d",&b[i]);
}
b[0]=0;b[m+1]=0;b[m+2]=-1;
dp[0][0]=1.0;
for(int i=0;i<t;i++)
{
for(int j=0;j<m+1;j++)
{
if(b[j+1]==MAX)
dp[i+2][j+1]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+1]+1]+=dp[i][j]*0.5;
if(b[j+2]==MAX)
dp[i+2][j+2]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+2]+2]+=dp[i][j]*0.5;
}
}
double ans=0;
for(int i=0;i<=t;i++)
ans+=dp[i][m+1];
if(ans>0.5)
printf("Bet for. %.4f\n",ans);
else if(ans==0.5)
printf("Push. 0.5000\n");
else if(ans<0.5)
printf("Bet against. %.4f\n",ans); }
return 0;
}

POJ-1644 To Bet or Not To Bet(概率DP)的更多相关文章

  1. poj 2151 Check the difficulty of problems(概率dp)

    poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...

  2. POJ 2151 Check the difficulty of problems:概率dp【至少】

    题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...

  3. POJ 2151 Check the difficulty of problems (概率dp)

    题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...

  4. UVA 1541 - To Bet or Not To Bet(概率递推)

    UVA 1541 - To Bet or Not To Bet 题目链接 题意:这题题意真是神了- -.看半天,大概是玩一个游戏,開始在位置0.终点在位置m + 1,每次扔一个硬币,正面走一步,反面走 ...

  5. UVA 1541 - To Bet or Not To Bet 记忆化DP概率

    Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a n ...

  6. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  7. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  8. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

  9. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

随机推荐

  1. [原]unity3D 相机跟随

    using UnityEngine;using System.Collections; public class CameraFollow : MonoBehaviour {            p ...

  2. [OpenCV] Samples 01: Geometry - 几何图形

    前言 基本的几何图形,标注功能. commondLineParser的使用参见:http://blog.csdn.net/u010305560/article/details/8941365 #inc ...

  3. 泛泰A870K去掉相机快门声音的方法

    首先ROOT手机,挂载读写,/system/media/audio/ui里面哈,把camera-click.ogg改成camera-click.ogg.bak就可以了 转载自:http://bbs.9 ...

  4. SpringBoot------8080端口被占用抛出异常

    异常信息: The Tomcat connector configured to listen on port failed to start. The port may already be in ...

  5. Dubbo -- 系统学习 笔记 -- 依赖

    Dubbo -- 系统学习 笔记 -- 目录 依赖 必需依赖 缺省依赖 可选依赖 依赖 必需依赖 JDK1.5+ 理论上Dubbo可以只依赖JDK,不依赖于任何三方库运行,只需配置使用JDK相关实现策 ...

  6. 安装eclipse,配置tomcat

    1.去官网(https://www.eclipse.org/downloads/download.php?file=/oomph/epp/oxygen/R/eclipse-inst-win64.exe ...

  7. 标签a点击以后,5秒内禁止点击,5秒后激活

    方法1:利用bootstrap里面的类disabled,禁止链接 <a href='javascript:onHref()' id="test">点击</a> ...

  8. 【整理】LINUX下使用CMAKE安装MYSQL

    原文地址:http://www.cppblog.com/issay789/archive/2013/01/05/196967.html 一.安装 m4 下载地址: http://files.w3pc. ...

  9. Englis - 英文字母和音标

    英语学习基础基础是一切的根本 学习是一个长期积累知识的过程,正确掌握各科学习方法显得尤其重要!很多孩子学习成绩不好.记忆力不佳都是因为没有掌握正确的学习方法而造成的. 最基本的是:26个英文字母 48 ...

  10. 《转载》Python并发编程之线程池/进程池--concurrent.futures模块

    本文转载自Python并发编程之线程池/进程池--concurrent.futures模块 一.关于concurrent.futures模块 Python标准库为我们提供了threading和mult ...