To Bet or Not To Bet

Time Limit: 1000MS Memory Limit: 10000K

Total Submissions: 1668 Accepted: 541

Description

Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a new game. It is played on a linear sequence of squares as shown below.

A chip is initially placed on the Start square. The player then tries to move the chip to the End square through a series of turns, at which point the game ends. In each turn a coin is fl

ipped: if the coin is heads the chip is moved one square to the right and if the coin is tails the chip is moved two squares to the right (unless the chip is one square away from the End square, in which case it just moves to the End square). At that point, any instruction on the square the coin lands on must be followed. Each instruction is one of the following:

1. Move right n squares (where n is some positive integer)

2. Move left n squares (where n is some positive integer)

3. Lose a turn

4. No instruction

After following the instruction, the turn ends and a new one begins. Note that the chip only follows the instruction on the square it lands on after the coin flip. If, for example, the chip lands on a square that instructs it to move 3 spaces to the left, the move is made, but the instruction on the resulting square is ignored and the turn ends. Gambling for this game proceeds as follows: given a board layout and an integer T, you must wager whether or not you think the game will end within T turns.

After losing his shirt and several other articles of clothing, Alexander has decided he needs professional help-not in beating his gambling addiction, but in writing a program to help decide how to bet in this game.

Input

Input will consist of multiple problem instances. The first line will consist of an integer n indicating the number of problem instances. Each instance will consist of two lines: the first will contain two integers m and T (1 <= m <= 50, 1 <= T <= 40), where m is the size of the board excluding the Start and End squares, and T is the target number of turns. The next line will contain instructions for each of the m interior squares on the board. Instructions for the squares will be separated by a single space, and a square instruction will be one of the following: +n, -n, L or 0 (the digit zero). The first indicates a right move of n squares, the second a left move of n squares, the third a lose-a-turn square, and the fourth indicates no instruction for the square. No right or left move will ever move you off the board.

Output

Output for each problem instance will consist of one line, either

Bet for. x.xxxx

if you think that there is a greater than 50% chance that the game will end in T or fewer turns, or

Bet against. x.xxxx

if you think there is a less than 50% chance that the game will end in T or fewer turns, or

Push. 0.5000

otherwise, where x.xxxx is the probability of the game ending in T or fewer turns rounded to 4 decimal places. (Note that due to rounding the calculated probability for display, a probability of 0.5000 may appear after the Bet for. or Bet against. message.)

Sample Input

5

4 4

0 0 0 0

3 3

0 -1 L

3 4

0 -1 L

3 5

0 -1 L

10 20

+1 0 0 -1 L L 0 +3 -7 0

Sample Output

Bet for. 0.9375

Bet against. 0.0000

Push. 0.5000

Bet for. 0.7500

Bet for. 0.8954

概率DP题目,

递推即可,

#include <iostream>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <stdlib.h>
#include <string> using namespace std;
#define MAX 999999
char a[55];
int m,t;
double dp[55][55];
int b[55];
int main()
{
int cas;
scanf("%d",&cas);
while(cas--)
{
memset(dp,0,sizeof(dp));
memset(b,0,sizeof(b));
scanf("%d%d",&m,&t);
for(int i=1;i<=m;i++)
{
scanf("%s",a); if(a[0]=='L')
b[i]=MAX;
else
sscanf(a,"%d",&b[i]);
}
b[0]=0;b[m+1]=0;b[m+2]=-1;
dp[0][0]=1.0;
for(int i=0;i<t;i++)
{
for(int j=0;j<m+1;j++)
{
if(b[j+1]==MAX)
dp[i+2][j+1]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+1]+1]+=dp[i][j]*0.5;
if(b[j+2]==MAX)
dp[i+2][j+2]+=dp[i][j]*0.5;
else
dp[i+1][j+b[j+2]+2]+=dp[i][j]*0.5;
}
}
double ans=0;
for(int i=0;i<=t;i++)
ans+=dp[i][m+1];
if(ans>0.5)
printf("Bet for. %.4f\n",ans);
else if(ans==0.5)
printf("Push. 0.5000\n");
else if(ans<0.5)
printf("Bet against. %.4f\n",ans); }
return 0;
}

POJ-1644 To Bet or Not To Bet(概率DP)的更多相关文章

  1. poj 2151 Check the difficulty of problems(概率dp)

    poj double 就得交c++,我交G++错了一次 题目:http://poj.org/problem?id=2151 题意:ACM比赛中,共M道题,T个队,pij表示第i队解出第j题的概率 问 ...

  2. POJ 2151 Check the difficulty of problems:概率dp【至少】

    题目链接:http://poj.org/problem?id=2151 题意: 一次ACM比赛,有t支队伍,比赛共m道题. 第i支队伍做出第j道题的概率为p[i][j]. 问你所有队伍都至少做出一道, ...

  3. POJ 2151 Check the difficulty of problems (概率dp)

    题意:给出m.t.n,接着给出t行m列,表示第i个队伍解决第j题的概率. 现在让你求:每个队伍都至少解出1题,且解出题目最多的队伍至少要解出n道题的概率是多少? 思路:求补集. 即所有队伍都解出题目的 ...

  4. UVA 1541 - To Bet or Not To Bet(概率递推)

    UVA 1541 - To Bet or Not To Bet 题目链接 题意:这题题意真是神了- -.看半天,大概是玩一个游戏,開始在位置0.终点在位置m + 1,每次扔一个硬币,正面走一步,反面走 ...

  5. UVA 1541 - To Bet or Not To Bet 记忆化DP概率

    Alexander Charles McMillan loves to gamble, and during his last trip to the casino he ran across a n ...

  6. poj 3071 Football(概率dp)

    id=3071">http://poj.org/problem? id=3071 大致题意:有2^n个足球队分成n组打比赛.给出一个矩阵a[][],a[i][j]表示i队赢得j队的概率 ...

  7. 【POJ】2151:Check the difficulty of problems【概率DP】

    Check the difficulty of problems Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8903   ...

  8. 【POJ 2750】 Potted Flower(线段树套dp)

    [POJ 2750] Potted Flower(线段树套dp) Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4566   ...

  9. POJ 2096 Collecting Bugs (概率DP,求期望)

    Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stu ...

随机推荐

  1. showModalDialog介绍

    基本介绍:          showModalDialog()         (IE 4+ 支持)          showModelessDialog()      (IE 5+ 支持)    ...

  2. mongo文件空间

    mongo的文件空间,是由一个一个的文件空间组成,如下图 在mongodb刚安装完成时只有一个指定的db都只有一个文件空间而已,例如这里的db是filedb 那么他的第一个文件空间为filedb.0, ...

  3. yum和apt-get用法及区别

    https://www.cnblogs.com/garinzhang/p/diff_between_yum_apt-get_in_linux.html

  4. spring+mybatise注解实现

    spring+mybatise注解实现 spring.jpa.database=MYSQL spring.datasource.type=com.alibaba.druid.pool.DruidDat ...

  5. Tomcat------启动时报错:Failed to start component [StandardEngine[Catalina].StandardHost[localhost].

    启动报错信息: Failed to start component [StandardEngine[Catalina].StandardHost[localhost] 因此出现这种错误的原因可能有: ...

  6. python运行显示编码错误

    python中运行显示编码错误一般有2种原因: 编码与译码的方式不一致 在编写Python时,当使用中文输出或注释时运行脚本,会提示错误信息: SyntaxError: Non-ASCII chara ...

  7. 递归的几个demo

    /** * Created by root * Description : 递归函数 */ object RecursionTest { def main(args: Array[String]): ...

  8. 【RF库XML测试】Get Elements

    Name:Get ElementsSource:XML <test library>Arguments:[ source | xpath ]Returns a list of elemen ...

  9. Django 添加应用

    一个项目可以添加多个应用,可以使用以下两种方法来添加应用: [root@localhost web]$ python manage.py startapp blog [root@localhost w ...

  10. Windows命令行参数的知识(一)

    最近没事的时候,准备研究一下Windows命令行参数的知识,因为每次自己在操作电脑时总是效率太慢,如果能够了解Windows参数的一些知识,绝对能提高效率! 基本外部命令和内部命令 首先是基本的知识, ...