ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解
题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 ;所以3共有4种),n最多有1e5位,答案取模p = 1e9+7
思路:就是往n个东西中间插任意个板子,所以最多能插n - 1个,所以答案为2^(n - 1) % p。但是n最大有1e5位数,所以要用小费马定理化简。
小费马定理:假如p是质数,且gcd(a,p)=1,那么a (p-1)≡1(mod p)
所以我们只要把n - 1分解为n - 1 = k(p - 1) + m,而2^ k(p - 1) % p ≡1,所以2^(n - 1) % p = 2^m % p,化简完成。
所以我们把n - 1对p-1取模,用了大数取模
代码:
#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = 1e5 + ;
const int seed = ;
const ll MOD = 1e9 + ;
const ll MOD1 = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
char num[maxn];
/*ll getmod(){
ll ans = num[0] - '0';
int len = strlen(num);
for(int i = 1; i < len; i++)
ans = (ans * 10 + num[i] - '0') % MOD1;
return ans - 1;
}*/
ll getmod(){
ll ans = num[] - '';
int len = strlen(num);
for(int i = ; i < len - ; i++)
ans = (ans * + num[i] - '') % MOD1;
if(len > ) ans = ans * + num[len - ] - '';
return (ans - ) % MOD1;
}
ll pmul(ll a, ll b){
ll ans = ;
while(b){
if(b & ) ans = (ans * a) % MOD;
a = a * a % MOD;
b >>= ;
}
return ans;
}
int main(){
int T;
ll n, p;
scanf("%d", &T);
while(T--){
scanf("%s", num);
p = getmod();
printf("%lld\n", pmul(, p));
}
return ;
}
ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解的更多相关文章
- 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies
G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...
- ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)
题目链接:https://nanti.jisuanke.com/t/31716 题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直 ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)
https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...
- ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies
There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more in ...
- ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)
There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies
There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...
- ACM-ICPC 2018 焦作赛区网络预赛
这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)
ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...
- ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)
God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...
随机推荐
- 算法抽象及用Python实现具体算法
一.算法抽象 它们一般是在具体算法的基础上总结.提炼.分析出来的,再反过来用于指导解决其它问题.它们适用于某一类问题的解决,用辩 证法的观点看,抽象的算法和具体的算法就是抽象与具体.普遍性与特殊性.共 ...
- Java泛型初探
概述 泛型就是参数化类型,一提到参数,最熟悉的就是定义方法时有形参,然后调用此方法时传递实参,其实你回味一下这里.形参参数化的是变量的值,而如果你想参数化变量的类型,那就用到泛型了.同样的, 定义的时 ...
- kubernetes实战(二十五):kubeadm 安装 高可用 k8s v1.13.x
1.系统环境 使用kubeadm安装高可用k8s v.13.x较为简单,相比以往的版本省去了很多步骤. kubeadm安装高可用k8s v.11 和 v1.12 点我 主机信息 主机名 IP地址 说明 ...
- 【剑指offer】旋转数组的最小数字
一.题目: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转. 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素. 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个 ...
- .Net Core 使用依赖注入
ASP.NET Core 源码阅读笔记(1) ---Microsoft.Extensions.DependencyInjection 在asp .net中使用依赖注入很简单,只需要在Startup类的 ...
- python基础24 -----python中的各种锁
一.全局解释器锁(GIL) 1.什么是全局解释器锁 在同一个进程中只要有一个线程获取了全局解释器(cpu)的使用权限,那么其他的线程就必须等待该线程的全局解释器(cpu)使 用权消失后才能使用全局解释 ...
- GNU Make中文手册(一)
GNU Make 翻译:loverszhaokai 最新版文档请参考github: https://github.com/loverszhaokai/GNUMakeManual_CN 欢迎大家提出修改 ...
- sql server数字转字符串出现科学计数法
在从excel往sql server导入数据,电话.编号等数字呈现float类型,然后向b表中insert后(phone为nvarchar)出现科学计数法,解决方法:需将float等数据类型转为标准的 ...
- 1:4 UI标签和通用标签
UI标签:负责用户界面输出的标签. 非标单:例如错误信息提示的标签 fielderror,actionerror,actionmessagr:系统错误消息的自动显示 通 ...
- VS2010/MFC编程入门之三十八(状态栏的使用详解)
上一节中鸡啄米讲了工具栏的创建.停靠与使用,本节来讲解状态栏的知识. 状态栏简介 状态栏相信大家在很多窗口中都能见到,它总是用来显示各种状态.状态栏实际上也是一个窗口,一般分为几个窗格,每个窗格分别用 ...