题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 ;所以3共有4种),n最多有1e5位,答案取模p = 1e9+7

思路:就是往n个东西中间插任意个板子,所以最多能插n - 1个,所以答案为2^(n - 1) % p。但是n最大有1e5位数,所以要用小费马定理化简。

小费马定理:假如p是质数,且gcd(a,p)=1,那么a (p-1)≡1(mod p)

所以我们只要把n - 1分解为n - 1 = k(p - 1) + m,而2^ k(p - 1) % p ≡1,所以2^(n - 1) % p = 2^m % p,化简完成。

所以我们把n - 1对p-1取模,用了大数取模

代码:

#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = 1e5 + ;
const int seed = ;
const ll MOD = 1e9 + ;
const ll MOD1 = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
char num[maxn];
/*ll getmod(){
ll ans = num[0] - '0';
int len = strlen(num);
for(int i = 1; i < len; i++)
ans = (ans * 10 + num[i] - '0') % MOD1;
return ans - 1;
}*/
ll getmod(){
ll ans = num[] - '';
int len = strlen(num);
for(int i = ; i < len - ; i++)
ans = (ans * + num[i] - '') % MOD1;
if(len > ) ans = ans * + num[len - ] - '';
return (ans - ) % MOD1;
}
ll pmul(ll a, ll b){
ll ans = ;
while(b){
if(b & ) ans = (ans * a) % MOD;
a = a * a % MOD;
b >>= ;
}
return ans;
}
int main(){
int T;
ll n, p;
scanf("%d", &T);
while(T--){
scanf("%s", num);
p = getmod();
printf("%lld\n", pmul(, p));
}
return ;
}

ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解的更多相关文章

  1. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

  2. ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)

    题目链接:https://nanti.jisuanke.com/t/31716 题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直 ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)

    https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...

  4. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies

    There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more in ...

  5. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  6. ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies

    There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...

  7. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  8. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. linux find 命令

    Linux中find常见用法示例 ·find   path   -option   [   -print ]   [ -exec   -ok   command ]   {} \; find命令的参数 ...

  2. Servlet----------ServletContext (重要)

    1.ServletContext的概述 一个项目只有一个ServletContext对象!application 我们可以在N多个Servlet中获取这个唯一的对象,使用它来给多个Servlet传递数 ...

  3. 关于static、内部类

    1.static不能修饰外部类的原因 static修饰的成员是属于某个类的.而外部类的上一级程序单元是包,所以static不能修饰外部类. 2.外部类,内部类有不同访问权限的原因 外部类的上一级程序单 ...

  4. 几种常见web攻击手段及其防御方式

    XSS(跨站脚本攻击) CSRF(跨站请求伪造) SQL注入 DDOS web安全系列目录 总结几种常见web攻击手段极其防御方式 总结几种常见的安全算法 XSS 概念 全称是跨站脚本攻击(Cross ...

  5. web.xml中对post请求的乱码问题解决

    直接在web.xml中添加如下代码: <filter> <filter-name>encodingFilter</filter-name> <filter-c ...

  6. 处理hash冲突

    “处理冲突” 的实际含义是: 为产生冲突的地址寻找下一个哈希地址. 1. 开放定址法 2. 链地址法 ------------------------------------------------- ...

  7. python三步实现人脸识别

    原文地址https://www.toutiao.com/a6475797999176417550 Face Recognition软件包 这是世界上最简单的人脸识别库了.你可以通过Python引用或者 ...

  8. Verilog篇(三)仿真原理

    首先引入一个例子: `timescale  1ns/100ps module   TB;                                                         ...

  9. VS2010/MFC编程入门之三十五(菜单:菜单及CMenu类的使用)

    鸡啄米在上一节中讲的是VS2010的菜单资源,本节主要讲菜单及CMenu类的使用. CMenu类的主要成员函数 MFC为菜单的操作提供了CMenu类,下面鸡啄米就常用的几个成员函数进行简单的介绍. B ...

  10. Python: dict setdault函数与collections.defaultdict()的区别

    setdault用法 >>>dd={'hy':1,'hx':2} >>>cc=dd.setdefault('hz',1) >>>cc      返 ...