题意:给你n个东西,叫你把n分成任意段,这样的分法有几种(例如3:1 1 1,1 2,2 1,3 ;所以3共有4种),n最多有1e5位,答案取模p = 1e9+7

思路:就是往n个东西中间插任意个板子,所以最多能插n - 1个,所以答案为2^(n - 1) % p。但是n最大有1e5位数,所以要用小费马定理化简。

小费马定理:假如p是质数,且gcd(a,p)=1,那么a (p-1)≡1(mod p)

所以我们只要把n - 1分解为n - 1 = k(p - 1) + m,而2^ k(p - 1) % p ≡1,所以2^(n - 1) % p = 2^m % p,化简完成。

所以我们把n - 1对p-1取模,用了大数取模

代码:

#include<queue>
#include<cstring>
#include<set>
#include<map>
#include<stack>
#include<cmath>
#include<vector>
#include<cstdio>
#include<iostream>
#include<algorithm>
typedef long long ll;
const int maxn = 1e5 + ;
const int seed = ;
const ll MOD = 1e9 + ;
const ll MOD1 = 1e9 + ;
const int INF = 0x3f3f3f3f;
using namespace std;
char num[maxn];
/*ll getmod(){
ll ans = num[0] - '0';
int len = strlen(num);
for(int i = 1; i < len; i++)
ans = (ans * 10 + num[i] - '0') % MOD1;
return ans - 1;
}*/
ll getmod(){
ll ans = num[] - '';
int len = strlen(num);
for(int i = ; i < len - ; i++)
ans = (ans * + num[i] - '') % MOD1;
if(len > ) ans = ans * + num[len - ] - '';
return (ans - ) % MOD1;
}
ll pmul(ll a, ll b){
ll ans = ;
while(b){
if(b & ) ans = (ans * a) % MOD;
a = a * a % MOD;
b >>= ;
}
return ans;
}
int main(){
int T;
ll n, p;
scanf("%d", &T);
while(T--){
scanf("%s", num);
p = getmod();
printf("%lld\n", pmul(, p));
}
return ;
}

ACM-ICPC 2018 焦作赛区网络预赛G Give Candies(隔板定理 + 小费马定理 + 大数取模,组合数求和)题解的更多相关文章

  1. 【费马小定理+快速幂取模】ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies

    G. Give Candies There are N children in kindergarten. Miss Li bought them N candies. To make the pro ...

  2. ACM-ICPC 2018 焦作赛区网络预赛 G. Give Candies (打表找规律+快速幂)

    题目链接:https://nanti.jisuanke.com/t/31716 题目大意:有n个孩子和n个糖果,现在让n个孩子排成一列,一个一个发糖果,每个孩子随机挑选x个糖果给他,x>=1,直 ...

  3. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies(高精度求余)

    https://nanti.jisuanke.com/t/31716 题意 n颗糖果n个人,按顺序给每个人任意数目(至少一个)糖果,问分配方案有多少. 分析 插板法或者暴力打表后发现答案就为2^(n- ...

  4. ACM-ICPC 2018 焦作赛区网络预赛 G Give Candies

    There are NNN children in kindergarten. Miss Li bought them NNN candies. To make the process more in ...

  5. ACM-ICPC 2018 焦作赛区网络预赛- G:Give Candies(费马小定理,快速幂)

    There are N children in kindergarten. Miss Li bought them NNN candies. To make the process more inte ...

  6. ACM-ICPC 2018 焦作赛区网络预赛 G题 Give Candies

    There are NN children in kindergarten. Miss Li bought them NN candies. To make the process more inte ...

  7. ACM-ICPC 2018 焦作赛区网络预赛

    这场打得还是比较爽的,但是队友差一点就再过一题,还是难受啊. 每天都有新的难过 A. Magic Mirror Jessie has a magic mirror. Every morning she ...

  8. ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心)

    ACM-ICPC 2018 徐州赛区网络预赛 G. Trace (思维,贪心) Trace 问答问题反馈 只看题面 35.78% 1000ms 262144K There's a beach in t ...

  9. ACM-ICPC 2018 焦作赛区网络预赛- L:Poor God Water(BM模板/矩阵快速幂)

    God Water likes to eat meat, fish and chocolate very much, but unfortunately, the doctor tells him t ...

随机推荐

  1. qt——常用的布局方法

    布局相关对象及简介 窗体上的所有的控件必须有一个合适的尺寸和位置.Qt提供了一些类负责排列窗体上的控件,主要有:QHBoxLayout,QVBoxLayout,QGridLayout,QStackLa ...

  2. python中url解析 or url的base64编码

    目录 from urllib.parse import urlparse, quote, unquote, urlencode1.解析url的组成成分:urlparse(url)2.url的base6 ...

  3. 高性能MySQL中的三星索引

    高性能MySQL中的三星索引 我对此提出了深深的疑问: 一星:相关的记录指的是什么??(相关这个词很深奥,“相关部门”是什么部门) 二星:如果建立了B-Tree(B+Tree)索引,数据就有序了.三星 ...

  4. Linux Packages Search

    网站 : https://www.pkgs.org/ https://centos.pkgs.org/

  5. inter x86 emulator accelerator(HAXM installer) not compatible with windows

    在SDK manager中遇到如下错误:这将导致AVD后期运行和启动方面的问题. 解决办法: 在如下的网址里面下载haxm-windows_v6_2_0这个文件的压缩包,自己手动安装即可.网站如下:点 ...

  6. ubuntu设置目录容量大小

    1:方法如下 sudo dd if=/dev/zero of=/root/disk1.img bs=2M count=10      //          2M*10=20M    zero 是de ...

  7. WebService之Axis2(1):用POJO实现0配置的WebService

    Axis2是一套崭新的WebService引擎,该版本是对Axis1.x重新设计的产物.Axis2不仅支持SOAP1.1和SOAP1.2,还集成了非常流行的REST WebService,同时还支持S ...

  8. jmeter 读取excel数据

    jmeter 读取excel数据使用的方法是使用Jmeter CSV Data Set Config参数化 但是将excel文件保存成csv格式后,jmeter读取后返回的数据总是出现乱码问题, 以下 ...

  9. http协议基础(三)几种数据传输方式

    说说http协议的一些特点: 1)无状态 http协议是一种自身不对请求和响应之间的通信状态进行保存的协议,即无状态协议. 这种设置的好处是:更快的处理更多的请求事务,确保协议的可伸缩性 不过随着we ...

  10. 来自阿里妈妈的iconfont(转)

    转自http://www.augsky.com/775.html 随便说说两者的优缺点 其实主要是说iconfont的优点和Font Awesome的缺点.-_-|||iconfont的图标库相当巨大 ...