近日,微众银行联邦学习FATE开源社区迎来了两位新贡献者——来自腾讯的刘洋及秦姝琦,作为云计算安全领域的专家,两位为FATE构造了新的功能点,并在Github上提交修复了相关漏洞。(Github项目地址:https://github.com/FederatedAI/FATE

)从FATE的面世,到贡献者激励制度的推出,参与开源社区建设的数据安全行业从业者不断踊现,FATE在业内的关注度、价值认可度逐步提升,联邦学习生态正进一步深化及拓展。

AI时代数据安全问题严峻,联邦学习是必经解决路径

人工智能的发展与普及不断改变着人们的生活方式,但AI的实现离不开海量数据源的支撑。自大数据上升为国家战略后,其产业和应用得到了快速发展,但是在数据丰富程度、数据质量、数据共享、大数据平台安全和大数据产业生态等领域上,这一行业仍有许多亟待解决的问题。

作为一种基于多方安全计算的分布式机器学习技术,联邦学习能让参与各方可以在不披露底层数据和底层数据的加密(混淆)形态的前提下共建模型,在行业应用中帮助不同机构打破隔阂,进行AI协作,同时各方的数据都不出本地,让用户隐私得到保护。这样一种共赢的机器学习方式,让联邦学习成为了AI时代大数据安全及隐私保护的必备技术。

FATE(Federated AI Technology Enabler)是全球首个联邦学习工业级开源框架,由微众银行AI团队推出,从GitHub开源,到贡献者激励机制的发布,微众银行AI团队期望拥抱所有从业者,以开放的姿态,共建联邦学习生态。(官网地址:https://www.fedai.org.cn/cn/

FATE直击业界痛点,搭建数据安全多方合作桥梁

新晋贡献者中,秦姝琦来自于腾讯神盾沙箱,在采访中她提到,目前行业面临着许多痛点,如为了牟取利益,部分手机APP“越权”获取用户信息,衍生出规模庞大的黑灰产业链。甚至还有黑灰产组织对热门app进行反编译,修改源码后经伪装重新投放到应用市场来获取数据和利益。

除此以外,数据的确权也是一个难点。非法采集到的数据最后会就会成为黑产市场上的商品。而在数据流通这里,即使是合法授权给第三方使用数据,也无法保证第三方不会私下拷贝滥用数据。

而其团队研究构建的神盾沙箱,在结合FATE计算框架后,则可以解决数据流通中的隐私安全问题,同时为大数据产品和AI产品的结合提供隐私安全的解决方案。使得APP厂商减少对用户数据需求量同时也能获得更庞大、标注质量更好的数据集。

秦姝琦表示,联邦学习是应对大数据新时代下新问题的新解决方案,在数据安全多方合作领域,联邦学习FATE结合神盾沙箱的应用,可以通过技术手段使得数据流通合法合规,从而打破“信息孤岛”现状。

发力开源生态,推动数据安全从业者共建FATE

据悉,腾讯神盾沙箱目前的核心计算模块由FATE提供,神盾沙箱项目团队在使用FATE框架、算法的过程中碰到的不足会主动寻求方法改进,并将其贡献到FATE开源项目中,这种合作形式同时促进了神盾沙箱的产品打磨和FATE项目的完善。

随着更多的人加入联邦生态,互相推动着打磨产品的进步,这种正循环将会使更多的人受益。一个有活力的开源生态离不开贡献,以及成员间的彼此的促进。

目前,FATE开源社区激励制度已全面上线,参与建设的贡献者将获得官方证书与相应激励。作为联邦学习全球首个工业级开源社区,FATE在Github上线仅数月,Star数便突破700,从知名高校香港科技大学学子敬清贺,到知名科技企业腾讯刘洋、秦姝琦纷纷参与贡献,无不表明FATE对数据安全强大的解决能力。最近腾讯云盾沙箱与FATE开展的进一步合作,更是彰显了FATE的可靠性与适配能力,FATE正走向更开阔的行业领域。

联邦学习促进人工智能领域的开放协同,提升人工智能数据流通性,推动多组织机构高度协同合作,促进人工智能产业安全健康发展及赋能各个应用领域。在此背景下,无论是FATE的开源,还是腾讯云参与贡献,我们都可以窥见联邦学习生态的蓬勃发展。未来将会有更多产业领域受益,中国数据安全也将迈向新的台阶。

联邦学习开源框架FATE助力腾讯神盾沙箱,携手打造数据安全合作生态的更多相关文章

  1. 腾讯数据安全专家谈联邦学习开源项目FATE:通往隐私保护理想未来的桥梁

    数据孤岛.数据隐私以及数据安全,是目前人工智能和云计算在大规模产业化应用过程中绕不开的“三座大山”. “联邦学习”作为新一代的人工智能算法,能在数据不出本地的情况下,实现共同建模,提升AI模型的效果, ...

  2. Google深度学习开源框架TenseorFlow安装

    Google近期发布了TensorFlow,考录到Google出品,必属精品,估计这玩意会火,不过火钳刘明已经来不及了 今天才想着安装来试试 TensorFlow官网:https://www.tens ...

  3. Deep learning深度学习的十大开源框架

    Google开源了TensorFlow(GitHub),此举在深度学习领域影响巨大,因为Google在人工智能领域的研发成绩斐然,有着雄厚的人才储备,而且Google自己的Gmail和搜索引擎都在使用 ...

  4. C++的一些不错开源框架,可以学习和借鉴

    from https://www.cnblogs.com/charlesblc/p/5703557.html [本文系外部转贴,原文地址:http://coolshell.info/c/c++/201 ...

  5. MindSpore联邦学习框架解决行业级难题

    内容来源:华为开发者大会2021 HMS Core 6 AI技术论坛,主题演讲<MindSpore联邦学习框架解决隐私合规下的数据孤岛问题>. 演讲嘉宾:华为MindSpore联邦学习工程 ...

  6. iOS超全开源框架、项目和学习资料汇总(5)AppleWatch、经典博客、三方开源总结篇

    完整项目 v2ex – v2ex 的客户端,新闻.论坛.apps-ios-wikipedia – apps-ios-wikipedia 客户端.jetstream-ios – 一款 Uber 的 MV ...

  7. SunSonic 3.0 ORM开源框架的学习

    SubSonic 3.0简介 接触到SubSonic3.0 ORM框架是看了AllEmpty大神的从零开始编写自己的C#框架(链接在此)系列的随笔接触到的,本文章学习内容源于AllEmpty大神. S ...

  8. 【转】iOS超全开源框架、项目和学习资料汇总

    iOS超全开源框架.项目和学习资料汇总(1)UI篇iOS超全开源框架.项目和学习资料汇总(2)动画篇iOS超全开源框架.项目和学习资料汇总(3)网络和Model篇iOS超全开源框架.项目和学习资料汇总 ...

  9. Android 学习笔记之Volley开源框架解析(一)

    PS:看完了LGD的六场比赛...让人心酸... 学习内容: 1.Http请求的过程... 2.Volley的简单介绍...   1.Http请求...   这里只是简单的说一下Http请求的过程.. ...

随机推荐

  1. 闯荡Ext-第一篇

    今天在网上找到了一本非常好的书:<Ext江湖>,这本书是由大漠穷秋大神写的,刚看到这本书的时候,心里面的那个激动劲啊,本来原先的时候心里面就一直念叨着想要学习Ext,但是苦于找不到好的资料 ...

  2. ccf 201809-4 再卖菜

    这题一开始不知道剪枝这种操作,只会傻傻地dfs. 然后dfs递归写80分超时,非递归写70分超时(纳尼?我一直以为非递归算法在时间上会更优秀一些,为什么会这样?!!) 剪一下枝就都能过了 #inclu ...

  3. maven的不同版本下载及环境配置

    Maven不同版本下载及环境配置 Maven下载 去到官网 https://maven.apache.org/ 会发现是最新版本,但是一般下载的话,都会下载比最新的版本要低两到三个小版本的,这里就下载 ...

  4. 7.17 正则表达式 re模块

    在介绍正则表达式和re模块之前,先简要介绍一下 正则表达式与re模块的关系 1.正则表达式是一门独立的技术,任何语言均可使用 2.python中要想使用正则表达式需要通过re模块 正则表达式 元字符 ...

  5. linux command line learn - get the absolute path of a file

    get the absolute path of a file in linux readlink -f filenme [heshuai@login01 3_Variation_calling]$ ...

  6. Unity进阶之ET网络游戏开发框架 06-游客登录

    版权申明: 本文原创首发于以下网站: 博客园『优梦创客』的空间:https://www.cnblogs.com/raymondking123 优梦创客的官方博客:https://91make.top ...

  7. Windows Server 2008在网络环境配置打印机

    下面学习在Windows Server2008在网络环境搭建打印机服务器,打印机服务器也是很常用的,特别是在中大型企业里面,打印机数量比较多为方便管理,可以搭建一个打印机服务,这里介绍一下,本地打印机 ...

  8. python所有的内置异常类型汇总

    内置异常基类 在 Python 中,所有异常必须为一个派生自 BaseException 的类的实例. 通过子类化创建的两个不相关异常类永远是不等效的,既使它们具有相同的名称. 下列异常主要被用作其他 ...

  9. net core WebApi——文件分片下载

    目录 前言 开始 测试 小结 @ 前言 上一篇net core WebApi--文件分片上传与跨域请求处理介绍完文件的上传操作,本来是打算紧接着写文件下载,中间让形形色色的事给耽误的,今天还是抽个空整 ...

  10. OpenXML性能真的低下吗?

    博文NET导出Excel的四种方法及评测 中对比了4个库的导出性能,但对OpenXML的评价并不高,本人觉得不合理,所以我重新测试下性能 基于OpenXML的包装类 ExcelDownWorker p ...