1. 什么是RNN

循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)

1.1 RNN的应用

  • 文本生成(生成序列)
  • 机器翻译
  • 看图说话
  • 文本(情感)分析
  • 智能客服
  • 聊天机器人
  • 语音识别
  • 搜索引擎
  • 个性化推荐

1.2 为什么有了CNN,还要RNN?

  • 传统神经网络(包括CNN),输入和输出都是互相独立的。图像上的猫和狗是分隔开的,但有些任务,后续的输出和之前的内容是相关的。例如:我是中国人,我的母语是____。这是一道填空题,需要依赖于之前的输入。
  • 所以,RNN引入“记忆”的概念,也就是输出需要依赖于之前的输入序列,并把关键输入记住。循环2字来源于其每个元素都执行相同的任务。
  • 它并⾮刚性地记忆所有固定⻓度的序列,而是通过隐藏状态来存储之前时间步的信息。

1.3 RNN的网络结构

首先先上图,然后再解释:

现在我们考虑输⼊数据存在时间相关性的情况。假设 \(X_t\in_{}\mathbb{R}^{n*d}\) 是序列中时间步t的小批量输⼊,\(H_t\in_{}\mathbb{R}^{n*h}\) 是该时间步的隐藏变量。那么根据以上结构图当前的隐藏变量的公式如下:

\[H_t=\phi(X_tW_{xh}+H_{t-1}W_{hh}+b_h)\]

从以上公式我们可以看出,这⾥我们保存上⼀时间步的隐藏变量 \(H_{t-1}\),并引⼊⼀个新的权重参数,该参数⽤来描述在当前时间步如何使⽤上⼀时间步的隐藏变量。具体来说,时间步 t 的隐藏变量的计算由当前时间步的输⼊和上⼀时间步的隐藏变量共同决定。 \(\phi\) 函数其实就是激活函数。

我们在这⾥添加了 \(H_{t-1}W_{hh}\) ⼀项。由上式中相邻时间步的隐藏变量 \(H_t 和H_{t-1}\) 之间的关系可知,这⾥的隐藏变量能够捕捉截⾄当前时间步的序列的历史信息,就像是神经⽹络当前时间步的状态或记忆⼀样。因此,该隐藏变量也称为隐藏状态。由于隐藏状态在当前时间步的定义使⽤了上⼀时间步的隐藏状态,上式的计算是循环的。使⽤循环计算的⽹络即循环神经⽹络(recurrent neural network)。

在时间步t,输出层的输出和多层感知机中的计算类似:

\[O_t=H_tW_{hq}+b_q\]

1.4 双向RNN

之前介绍的循环神经⽹络模型都是假设当前时间步是由前⾯的较早时间步的序列决定的,因此它
们都将信息通过隐藏状态从前往后传递。有时候,当前时间步也可能由后⾯时间步决定。例如,
当我们写下⼀个句⼦时,可能会根据句⼦后⾯的词来修改句⼦前⾯的⽤词。双向循环神经⽹络通过增加从后往前传递信息的隐藏层来更灵活地处理这类信息。下图演⽰了⼀个含单隐藏层的双向循环神经⽹络的架构。

在双向循环神经⽹络的架构中,设该时间步正向隐藏状态为 \(\overrightarrow{H}_t\in_{}\mathbb{R}^{n*h}\)(正向隐藏单元个数为h),反向隐藏状态为 \(\overleftarrow{H}_t\in_{}\mathbb{R}^{n*h}\)(反向隐藏单元个数为h)。我们可以分别
计算正向隐藏状态和反向隐藏状态:

\[\overrightarrow{H}_t=\phi(X_tW_{xh}^{(f)}+\overrightarrow{H}_{t-1}W_{hh}^{(f)}+b_h^{(f)})\]

\[\overleftarrow{H}_t=\phi(X_tW_{xh}^{(b)}+\overleftarrow{H}_{t-1}W_{hh}^{(b)}+b_h^{(b)})\]

然后我们连结两个⽅向的隐藏状态 \(\overrightarrow{H}_t和\overleftarrow{H}_t\) 来得到隐藏状态 \(H_t\in_{}\mathbb{R}^{n*2h}\),并将其输⼊到输出层。输出层计算输出 \(O_t\in_{}\mathbb{R}^{n*q}\)(输出个数为q):

\[O_t=H_tW_{hq}+b_q\]

双向循环神经⽹络在每个时间步的隐藏状态同时取决于该时间步之前和之后的⼦序列(包
括当前时间步的输⼊)。

1.5 BPTT算法

在之前你已经见过对于前向传播(上图蓝色箭头所指方向)怎样在神经网络中从左到右地计算这些激活项,直到输出所有地预测结果。而对于反向传播,我想你已经猜到了,反向传播地计算方向(上图红色箭头所指方向)与前向传播基本上是相反的。

我们先定义一个元素损失函数:

\[L^{(t)}(y^{'(t)},y^{(t)})=-y^{(t)}logy^{'(t)}-(1-y^{'(t)})log(1-y^{'(t)})\]

整个序列的损失函数:

\[L(y^{'},y)=\sum_{t=1}^{T_x}L^{(t)}(y^{'(t)},y^{(t)})\]$

在这个计算图中,通过\(y^{'(1)}\)可以计算对应的损失函数,于是计算出第一个时间步的损失函数,然后计算出第二个时间步的损失函数,然后是第三个时间步,一直到最后一个时间步,最后为了计算出总体损失函数,我们要把它们都加起来,通过等式计算出最后的

通俗易懂--循环神经网络(RNN)的网络结构!(TensorFlow实现)的更多相关文章

  1. 通过keras例子理解LSTM 循环神经网络(RNN)

    博文的翻译和实践: Understanding Stateful LSTM Recurrent Neural Networks in Python with Keras 正文 一个强大而流行的循环神经 ...

  2. 循环神经网络(RNN, Recurrent Neural Networks)介绍(转载)

    循环神经网络(RNN, Recurrent Neural Networks)介绍    这篇文章很多内容是参考:http://www.wildml.com/2015/09/recurrent-neur ...

  3. 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别

    深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...

  4. 循环神经网络(RNN, Recurrent Neural Networks)介绍

    原文地址: http://blog.csdn.net/heyongluoyao8/article/details/48636251# 循环神经网络(RNN, Recurrent Neural Netw ...

  5. 用纯Python实现循环神经网络RNN向前传播过程(吴恩达DeepLearning.ai作业)

    Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 ...

  6. 循环神经网络RNN及LSTM

    一.循环神经网络RNN RNN综述 https://juejin.im/entry/5b97e36cf265da0aa81be239 RNN中为什么要采用tanh而不是ReLu作为激活函数?  htt ...

  7. 循环神经网络RNN模型和长短时记忆系统LSTM

    传统DNN或者CNN无法对时间序列上的变化进行建模,即当前的预测只跟当前的输入样本相关,无法建立在时间或者先后顺序上出现在当前样本之前或者之后的样本之间的联系.实际的很多场景中,样本出现的时间顺序非常 ...

  8. 从网络架构方面简析循环神经网络RNN

    一.前言 1.1 诞生原因 在普通的前馈神经网络(如多层感知机MLP,卷积神经网络CNN)中,每次的输入都是独立的,即网络的输出依赖且仅依赖于当前输入,与过去一段时间内网络的输出无关.但是在现实生活中 ...

  9. 基于TensorFlow的循环神经网络(RNN)

    RNN适用场景 循环神经网络(Recurrent Neural Network)适合处理和预测时序数据 RNN的特点 RNN的隐藏层之间的节点是有连接的,他的输入是输入层的输出向量.extend(上一 ...

随机推荐

  1. Java多线程(六):wait(),notify()和notifyAll()

    wait(),notify()和notifyAll()介绍 1.wait() 使当前线程等待,直到另一个线程调用notify(),notifyAll()或者中断,当前线程调用wait()之前必须持有锁 ...

  2. 基于SpringBoot的WEB API项目的安全设计

    SpringBoot的开箱即用功能,大大降低了上手一个WEB应用的门槛,友好的REST接口支持,在SpringCloud微服务体系中可编程性大大提高,本篇基于一个面向企业调用方用户的WEB API项目 ...

  3. 基于SpringCloud的Microservices架构实战案例-在线API管理

    simplemall项目前几篇回顾: 1基于SpringCloud的Microservices架构实战案例-序篇 2基于SpringCloud的Microservices架构实战案例-架构拆解 3基于 ...

  4. SpringBoot 2.0.3 源码解析

    前言 用SpringBoot也有很长一段时间了,一直是底层使用者,没有研究过其到底是怎么运行的,借此机会今天试着将源码读一下,在此记录...我这里使用的SpringBoot 版本是  2.0.3.RE ...

  5. 一台服务器通过nginx配置多个域名(80端口)

    1. 问题描述 多个域名对应一个服务器,为了避免域名后增加端口号,两个域名都需要占用80端口号,使用nginx来进行配置. 2. 解决方案 目前项目中,线上正在使用(100%可用)多域名对应一个服务器 ...

  6. UEditor 之初体验后记

    1.UEditor 基本介绍 1.1.关于 UEditor 1.2.UEditor 现状 2.UEditor 简单使用 2.1.将 UEditor 源码集成到项目中 2.2.让 UEditor 的 U ...

  7. 题解 AT2243 【正方形のチップ】

    题意:在格子纸上: 给出格子的单位长度C,和在上面圆的半径R; 求出: 圆中有多少个完整的小正方形.(单位长度*单位长度) #include<cstdio> #include<cma ...

  8. .NET Core 3.0之深入源码理解HttpClientFactory(一)

    写在前面 创建HttpClient实例的时候,在内部会创建HttpMessageHandler链,我们知道HttpMessageHandler是负责建立连接的抽象处理程序,所以HttpClient的维 ...

  9. Java EE.Servlet.生成响应

    Servlet的核心职责就是根据客户端的请求生成动态响应. 1.编码类型 2.流操作(下载文件) servlet支持两种格式的输入/输出流.一种是字符输入输出流.另一种是字节输入输出流. 3.重定向

  10. RFC 2544 性能测试

    什么是RFC 2544?网络设备性能测试的一组指标,包括吞吐率.时延.丢包率.背靠背. * * * 吞吐率(Throughput). 定义:被测设备在不丢包的情况下,所能转发的最大数据流量.通常使用每 ...