洛谷P4173 残缺的字符串
题目大意:
两个带通配符的字符串\(a,b\),求\(a\)在\(b\)中出现的位置
字符串长度\(\le 300000\)
考虑魔改一发\(kmp\),发现魔改不出来
于是考虑上网搜题解
然后考虑\(ntt\),发现两个串匹配需要满足\(\sum\limits_{i=0}^{n-1}(a_i-b_i)=0\)
发现不太对,可能有正有负相消等于\(0\),我们加上平方\(\sum\limits_{i=0}^{n-1}(a_i-b_i)^2=0\)
再考虑通配符,我们可以设通配符的价值为\(0\),然后变形一下\(\sum\limits_{i=0}^{n-1}a_i*b_i*(a_i-b_i)^2=0\)
展开得到\(\sum\limits_{i=0}^{n-1}a_i^3*b_i-2a_i^2*b_i^2+a_i*b_i^3\)
我们可以把这三项分开考虑
对于其中一项\(\sum\limits_{i=0}^{n-1}a_i^3*b_i\)
设\(a^{'}\)为\(a\)翻转,\(j=n-i-1\),答案为\(\sum\limits_{i=0}^{n-1}a_j^{'3}*b_i\)
然后卷起来,判断卷完之后\(i=(m-1\sim n-1)\)哪个系数是零,把\(i-m+2\)加入答案
#include<bits/stdc++.h>
using namespace std;
namespace red{
#define int long long
inline int read()
{
int x=0;char ch,f=1;
for(ch=getchar();(ch<'0'||ch>'9')&&ch!='-';ch=getchar());
if(ch=='-') f=0,ch=getchar();
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return f?x:-x;
}
const int N=3e5+10,p=998244353,g=3,gi=332748118;
int n,m,limit,len;
char a[N],b[N];
int pos[N<<2];
int ret[N],num;
int a1[N<<2],b1[N<<2],c[N<<2];
inline int fast(int x,int k)
{
int ret=1;
while(k)
{
if(k&1) ret=ret*x%p;
x=x*x%p;
k>>=1;
}
return ret;
}
inline void ntt(int *a,int inv)
{
for(int i=0;i<limit;++i)
if(i<pos[i]) swap(a[i],a[pos[i]]);
for(int mid=1;mid<limit;mid<<=1)
{
int Wn=fast(inv?g:gi,(p-1)/(mid<<1));
for(int r=mid<<1,j=0;j<limit;j+=r)
{
int w=1;
for(int k=0;k<mid;++k,w=w*Wn%p)
{
int x=a[j+k],y=w*a[j+k+mid]%p;
a[j+k]=(x+y)%p;
a[j+k+mid]=(x-y)%p;
if(a[j+k+mid]<0) a[j+k+mid]+=p;
}
}
}
if(inv) return;
inv=fast(limit,p-2);
for(int i=0;i<limit;++i) a[i]=a[i]*inv%p;
}
inline void work(int *a,int *b,int opt)
{
ntt(a,1);ntt(b,1);
for(int i=0;i<limit;++i) c[i]=c[i]+a[i]*b[i]*opt;
}
inline void main()
{
m=read(),n=read();
scanf("%s%s",a,b);
for(int i=0;i<m;++i)
{
if(a[i]=='*') a[i]=0;
else a[i]=a[i]-'a'+1;
}
for(int i=0;i<n;++i)
{
if(b[i]=='*') b[i]=0;
else b[i]=b[i]-'a'+1;
}
reverse(a,a+m);
for(limit=1;limit<=n+m;limit<<=1) ++len;
for(int i=0;i<limit;++i) pos[i]=(pos[i>>1]>>1)|((i&1)<<(len-1));
for(int i=0;i<m;++i) a1[i]=a[i]*a[i]*a[i];
for(int i=0;i<n;++i) b1[i]=b[i];
work(a1,b1,1);
for(int i=0;i<limit;++i) a1[i]=b1[i]=0;
for(int i=0;i<m;++i) a1[i]=a[i]*a[i];
for(int i=0;i<n;++i) b1[i]=b[i]*b[i];
work(a1,b1,-2);
for(int i=0;i<limit;++i) a1[i]=b1[i]=0;
for(int i=0;i<m;++i) a1[i]=a[i];
for(int i=0;i<n;++i) b1[i]=b[i]*b[i]*b[i];
work(a1,b1,1);
ntt(c,0);
for(int i=m-1;i<n;++i)
{
if(!c[i]) ret[++num]=i-m+2;
}
printf("%lld\n",num);
for(int i=1;i<=num;++i) printf("%lld ",ret[i]);
}
}
signed main()
{
red::main();
return 0;
}
洛谷P4173 残缺的字符串的更多相关文章
- 洛谷 P4173 残缺的字符串 (FFT)
题目链接:P4173 残缺的字符串 题意 给定长度为 \(m\) 的模式串和长度为 \(n\) 的目标串,两个串都带有通配符,求所有匹配的位置. 思路 FFT 带有通配符的字符串匹配问题. 设模式串为 ...
- 洛谷P4173 残缺的字符串(FFT)
传送门 话说为什么字符串会和卷积扯上关系呢……到底得脑洞大到什么程度才能想到这种东西啊……大佬太珂怕了…… 因为通配符的关系,自动机已经废了 那么换种方式考虑,如果两个字符串每一位对应的编码都相等,那 ...
- 洛谷 P4173 残缺的字符串
(不知道xjb KMP可不可以做的说) (假设下标都以0开头) 对于有一定偏移量的序列的 对应位置 匹配或者数值计算的题,这里是有一种套路的,就是把其中一个序列翻转过来,然后卷积一下,所得到的新序列C ...
- Luogu P4173 残缺的字符串-FFT在字符串匹配中的应用
P4173 残缺的字符串 FFT在字符串匹配中的应用. 能解决大概这种问题: 给定长度为\(m\)的A串,长度为\(n\)的B串.问A串在B串中的匹配数 我们设一个函数(下标从\(0\)开始) \(C ...
- P4173 残缺的字符串(FFT字符串匹配)
P4173 残缺的字符串(FFT字符串匹配) P4173 解题思路: 经典套路将模式串翻转,将*设为0,设以目标串的x位置匹配结束的匹配函数为\(P(x)=\sum^{m-1}_{i=0}[A(m-1 ...
- BZOJ1856或洛谷1641 [SCOI2010]生成字符串
BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...
- 卡特兰数 洛谷P1641 [SCOI2010]生成字符串
卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...
- 洛谷 P1641 [SCOI2010]生成字符串
洛谷 这题一看就是卡塔兰数. 因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛! 平时我们推导卡塔兰是用一个边长为n的正方形推的, 相当于从(0,0)点走到(n,n)点,向上走的步数 ...
- 洛谷P1852 奇怪的字符串
题目描述 输入两个01串,输出它们的最长公共子序列的长度 输入输出格式 输入格式: 一行,两个01串 输出格式: 最长公共子序列的长度 输入输出样例 输入样例#1: 复制 01010101010 00 ...
随机推荐
- 《大数据技术应用与原理》第二版-第三章分布式文件系统HDFS
3.1分布式文件 HDFS默认一个块的大小是64MB,与普通文件不同的是如果一个文件小于数据块的大小,它并不占用整个数据块的存储空间. 主节点又叫名称节点:另一个叫从节点又叫数据节点.名称节点负责文件 ...
- nui-app 笔记
https://uniapp.dcloud.io
- 使用OC实现单链表:创建、删除、插入、查询、遍历、反转、合并、判断相交、求成环入口
一.概念 链表和数组都是一种线性结构,数组有序存储的,链表是无序存储的. 数组中的每一个元素地址是递增或者递减的关系,链表的每一个节点的地址没有此规律,它们是通过指针的指向连接起来. 链表种类:单链表 ...
- python做中学(二)bool()函数的用法
定义: bool() 函数用于将给定参数转换为布尔类型,如果没有参数,返回 False. bool 是 int 的子类. 语法: 以下是 bool() 方法的语法: class bool([x] 参数 ...
- 实例调用(__call__())
任何类,只需要定义一个__call__()方法,就可直接对实例进行调用 对实例进行直接调用就好比对一个函数进行调用一样 __call__()还可定义参数,所以调用完全可以把对象看成函数,把函数看成对象 ...
- NRF51822/NRF51802/NRF52832/NRF52810/NRF52811/NRF52840内核对比
NRF51822的内核为M0,FLASH是256K,RAM是16K,蓝牙BLE4.0/4.2(SDK新版本支持4.2)NRF51802的内核为M0,FLASH是256K,RAM是16K,蓝牙BLE4. ...
- 10-Django中间件
中间件 Django中的中间件是一个轻量级.底层的插件系统,可以介入Django的请求和响应处理过程,修改Django的输入和输出. 中间件的设计为开发者提供了一种无侵入式的开发方式,增强了Djang ...
- 浏览器记住密码的自动填充Input问题完美解决方案
1.input 前from和input占位隐藏 <form style="width:0;height:0;display:none;"> <input type ...
- C++值类别, move, perfect forward
推荐看链接顺序看,第一个链接很好地讲述了值类别地特性,图形很好理解.第二个链接介绍常见值类别的示例,帮助熟悉.第三个链接是第二个链接的补充,让你理解为什么需要std::move以及perfect fo ...
- javascript刷新当前页面的几种方式
这里总结一下JavaScript刷新当前页面的几种方式. 1.history对象. history.go(0); 2.location对象. location.reload(); location = ...